Oracle® Database

Database SecureFiles and Large Objects
Developer's Guide

20c
F16927-02
February 2020

ORACLE"

Oracle Database Database SecureFiles and Large Objects Developer's Guide, 20c
F16927-02

Copyright © 1996, 2020, Oracle and/or its affiliates.

Primary Author: Jayashree Sharma

Contributing Authors: Tanmay Choudhury, Tulika Das, Amith Kumar

Contributors: Bharath Aleti, Geeta Arora, Thomas H. Chang, Maria Chien, Subramanyam Chitti, Amit
Ganesh, Kevin Jernigan, Vikram Kapoor, Balaji Krishnan, Jean de Lavarene, Geoff Lee, Scott Lynn, Jack
Melnick, Atrayee Mullick, Eric Paapanen, Ravi Rajamani, Kam Shergill, Ed Shirk, Srinivas Vemuri

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or “commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience Xxiil
Documentation Accessibility XXili
Related Documents Xxiii
Conventions XXIV

Part | Getting Started

1 Introduction to Large Objects and SecureFiles
What Are Large Objects? 1-1
Why Use Large Objects? 1-1
Data Types that Use Large Objects 1-2
LOBs Used for Semistructured Data 1-2
LOBs Used for Unstructured Data 1-3
Why Not Use LONGs? 1-3
Different Kinds of LOBs 1-4
Internal LOBs 1-4
External LOBs and the BFILE Data Type 1-4
LOB Locators 1-5
Database Semantics for Internal and External LOBs 1-6
Large Object Data Types 1-6
About Object Data Types and LOBs 1-7
Storage and Creation of Other Data Types with LOBs 1-7
VARRAYs Stored as LOBs 1-7
BasicFiles and SecureFiles LOBs 1-8
Database File System (DBFS) 1-8

2 Working with LOBs

LOB Column States 2-1
Locking a Row Containing a LOB 2-2

ORACLE iii

LOB Open and Close Operations 2-2
LOB Locator and LOB Value 2-2
Using the Data Interface for LOBs 2-3
Use the LOB Locator to Access and Modify LOB Values 2-3
LOB Locators and BFILE Locators 2-3
Table for LOB Examples: The PM Schema print_media Table 2-4
LOB Column Initialization 2-4
Initializing a Persistent LOB Column 2-5
Initializing BFILES 2-6

LOB Access 2-7
Accessing a LOB Using SQL 2-7
Accessing a LOB Using the Data Interface 2-7
Accessing a LOB Using the Locator Interface 2-8
LOB Rules and Restrictions 2-8
Rules for LOB Columns 2-8
Restrictions for LOB Operations 2-10

3 Using Oracle LOB Storage

LOB Storage 3-1
BasicFiles LOB Storage 3-2
SecureFiles LOB Storage 3-2
About Advanced LOB Compression 3-2

About Advanced LOB Deduplication 3-2

About SecureFiles Encryption 3-3
CREATE TABLE with LOB Storage 3-3
CREATE TABLE LOB Storage Parameters 3-7
CREATE TABLE and SecureFiles LOB Features 3-10
CREATE TABLE with Advanced LOB Compression 3-11
CREATE TABLE with Advanced LOB Deduplication 3-13
CREATE TABLE with SecureFiles Encryption 3-14

ALTER TABLE with LOB Storage 3-16
About ALTER TABLE and LOB Storage 3-16
BNF for the ALTER TABLE Statement 3-16
ALTER TABLE LOB Storage Parameters 3-18
ALTER TABLE SecureFiles LOB Features 3-18
ALTER TABLE with Advanced LOB Compression 3-19

ALTER TABLE with Advanced LOB Deduplication 3-20

ALTER TABLE with SecureFiles Encryption 3-21
Initialization, Compatibility, and Upgrading 3-22
Compatibility and Upgrading 3-22

ORACLE

Initialization Parameter for SecureFiles LOBs 3-22

Migrating Columns from BasicFiles LOBs to SecureFiles LOBs 3-23
Preventing Generation of REDO Data When Migrating to SecureFiles LOBs 3-23
Online Redefinition for BasicFiles LOBs 3-24
Online Redefinition Example for Migrating Tables with BasicFiles LOBs 3-24
Redefining a SecureFiles LOB in Parallel 3-25

PL/SQL Packages for LOBs and DBFS 3-25
The DBMS_LOB Package Used with SecureFiles LOBs and DBFS 3-26
DBMS_LOB Constants Used with SecureFiles LOBs and DBFS 3-26
DBMS_LOB Subprograms Used with SecureFiles LOBs and DBFS 3-27
DBMS_SPACE Package 3-33

DBMS_SPACE.SPACE_USAGE() 3-33
4 Operations Specific to Persistent and Temporary LOBs

Persistent LOB Operations 4-1
Inserting a LOB into a Table 4-1
Selecting a LOB from a Table 4-1

Temporary LOB Operations 4-2
Creating and Freeing a Temporary LOB 4-2

Creating Persistent and Temporary LOBs in PL/SQL 4-3

Freeing Temporary LOBs in OCI 4-4

5 Distributed LOBs

Working with Remote LOBs 5-1

Working with Remote LOB Columns 5-1

Create table as select or insert as select 5-1

Functions on remote LOBSs returning scalars 5-2

Data Interface for remote LOBs 5-2

Working with Remote Locator 5-2
Using Local and Remote locators as bind with queries and DML on remote

tables 5-3

Restrictions when using remote LOB locators 5-4

SQL Semantics with LOBs in Remote Tables 5-4

Built-in Functions for Remote LOBs and BFILEs 5-4

Passing Remote Locator to Built in SQL Functions 5-6

Working with Remote LOBs in PL/SQL 5-6

PL/SQL Functions for Remote LOBs and BFILEs 5-7

Restrictions on Remote User-Defined Functions 5-7

Remote Functions in PL/SQL, OCI, and JDBC 5-7

Using Remote Locator in PL/SQL 5-8

ORACLE Y

Using Remote Locators with DBMS_LOB 5-8
Restrictions on Using Remote Locators with DBMS_LOB 5-8
Using Remote Locators with OCILOB API 5-9

6 DDL and DML Statements with LOBs

Creating a Table Containing One or More LOB Columns 6-1
Creating a Nested Table Containing a LOB 6-3
Inserting a Row by Selecting a LOB From Another Table 6-4
Inserting a LOB Value Into a Table 6-5
Inserting a Row by Initializing a LOB Locator Bind Variable 6-6
About Inserting Rows with LOB Locator Bind Variables 6-7
PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable 6-7
C (OCI): Inserting a Row by Initializing a LOB Locator Bind Variable 6-7
COBOL (Pro*COBOL): Inserting a Row by Initializing a LOB Locator Bind
Variable 6-8
C/C++ (Pro*C/C++): Inserting a Row by Initializing a LOB Locator Bind Variable 6-10
Java (JDBC): Inserting a Row by Initializing a LOB Locator Bind Variable 6-11
Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB() 6-12
Updating a Row by Selecting a LOB From Another Table 6-13
Parallel DDL and Parallel DML(PDML) Support for LOBs 6-13

Part Il value Semantics LOBs

7 SQL Semantics and LOBs

About Using LOBs in SQL 7-1
SQL Functions and Operators Supported for Use with LOBs 7-2
About SQL Functions and Operators for LOBs 7-2
Implicit Conversion of CLOB to CHAR Types 7-3
CLOBs and NCLOBs Do Not Follow Session Collation Settings 7-6
UNICODE Support 7-6
Codepoint Semantics 7-7
Return Values for SQL Semantics on LOBs 7-8
LENGTH Return Value for LOBs 7-8
Implicit Conversion of LOB Data Types in SQL 7-8
Implicit Conversion Between CLOB and NCLOB Data Types in SQL 7-8
Unsupported Use of LOBs in SQL 7-10
VARCHAR?2 and RAW Semantics for LOBs 7-11
About VARCHAR2 and RAW Semantics for LOBs 7-11
LOBs Returned from SQL Functions 7-11

ORACLE vi

IS NULL and IS NOT NULL Usage with VARCHAR2s and CLOBs 7-12
WHERE Clause Usage with LOBs 7-12
Built-in Functions for Remote LOBs and BFILEs 7-13

8 PL/SQL Semantics for LOBs

PL/SQL Statements and Variables 8-1
Implicit Conversions Between CLOB and VARCHAR2 8-1
Explicit Data Type Conversion Functions 8-2
VARCHAR2 and CLOB in PL/SQL Built-In Functions 8-3
PL/SQL Functions for Remote LOBs and BFILEs 8-5
9 Data Interface for Persistent LOBs
Overview of the Data Interface for Persistent LOBs 9-1
Benefits of Using the Data Interface for Persistent LOBs 9-2
Using the Data Interface for Persistent LOBs in PL/SQL 9-3
About Using the Data Interface for Persistent LOBs in PL/SQL 9-3
Guidelines for Accessing LOB Columns Using the Data Interface in SQL and
PL/SQL 9-4
Implicit Assignment and Parameter Passing 9-4
Passing CLOBs to SQL and PL/SQL Built-In Functions 9-5
Explicit Data Type Conversion 9-5
Calling PL/SQL and C Procedures from SQL 9-5
Calling PL/SQL and C Procedures from PL/SQL 9-6
Binds of All Sizes in INSERT and UPDATE Operations 9-6
4000 Byte Limit on Results of a SQL Operator 9-7
Example of 4000 Byte Result Limit of a SQL Operator 9-7
Restrictions on Binds of More Than 4000 Bytes 9-7
Example: PL/SQL - Using Binds of More Than 4000 Bytes in INSERT and
UPDATE 9-8
Using the Data Interface for LOBs with INSERT, UPDATE, and SELECT
Operations 9-8
Using the Data Interface for LOBs in Assignments and Parameter Passing 9-9
Using the Data Interface for LOBs with PL/SQL Built-In Functions 9-10
The Data Interface Used for Persistent LOBs in OCI 9-10
LOB Data Types Bound in OCI 9-11
LOB Data Types Defined in OCI 9-11
Multibyte Character Sets Used in OCI with the Data Interface for LOBs 9-11
Getting LOB Length 9-12
OCI Functions Used to Perform INSERT or UPDATE on LOB Columns 9-12
Performing Simple INSERTs or UPDATEs in One Piece 9-12

ORACLE vii

Using Piecewise INSERTs and UPDATEs with Polling 9-12

Performing Piecewise INSERTs and UPDATESs with Callback 9-13
Array INSERT and UPDATE Operations 9-13
The Data Interface Used to Fetch LOB Data in OCI 9-13
Simple Fetch in One Piece 9-13
Performing a Piecewise Fetch with Polling 9-13
Performing a Piecewise with Callback 9-14
Array Fetch 9-14
PL/SQL and C Binds from OCI 9-14
Example: C (OCI) - Binds of More than 4000 Bytes for INSERT and UPDATE 9-15
Using the Data Interface for LOBs in PL/SQL Binds from OCI on LOBs 9-15
Binding LONG Data for LOB Columns in Binds Greater Than 4000 Bytes 9-16
Binding LONG Data to LOB Columns Using Piecewise INSERT with Polling 9-17
Binding LONG Data to LOB Columns Using Piecewise INSERT with Callback 9-18
Binding LONG Data to LOB Columns Using an Array INSERT 9-19
Selecting a LOB Column into a LONG Buffer Using a Simple Fetch 9-20
Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch with Polling

9-21

Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch with
Callback 9-22

Selecting a LOB column into a LONG buffer using piecewise FETCH with
callback: Example with Length 9-23
Selecting a LOB Column into a LONG Buffer Using an Array Fetch 9-24
The Data Interface Used with Persistent LOBs in Java 9-25
The Data Interface Used with Remote LOBs 9-25
About the Data Interface with Remote LOBs 9-25
Non-Supported Syntax 9-26
Remote Data Interface Example in PL/SQL 9-26
Remote Data Interface Example in OCI 9-27
Remote Data Interface Examples in JDBC 9-27

Part Il Reference Semantics LOBs
10 Overview of Supplied LOB APIs

Programmatic Environments That Support LOBs 10-1
Comparing the LOB Interfaces 10-2
Using PL/SQL (DBMS_LOB Package) to Work With LOBs 10-5
Provide a LOB Locator Before Running the DBMS_LOB Routine 10-5
Guidelines for Offset and Amount Parameters in DBMS_LOB Operations 10-6
Determining Character Set ID 10-7

ORACLE viii

PL/SQL Functions and Procedures for LOBs 10-7

PL/SQL Functions and Procedures to Modify LOB Values 10-8
PL/SQL Functions and Procedures for Introspection of LOBs 10-8
PL/SQL Operations on Temporary LOBs 10-9
PL/SQL Read-Only Functions and Procedures for BFILESs 10-9
PL/SQL Functions and Procedures to Open and Close Internal and External
LOBs 10-10
Using OCI to Work With LOBs 10-10
Prefetching of LOB Data and Length 10-10
Setting the CSID Parameter for OCI LOB APIs 10-10
Fixed-Width and Varying-Width Character Set Rules for OCI 10-11
Other Operations 10-12
NCLOBs in OCI 10-12
OClLobLoadFromFile2() Amount Parameter 10-12
OCIlLobRead2() Amount Parameter 10-12
OCIlLobLocator Pointer Assignment 10-12
LOB Locators in Defines and Out-Bind Variables in OCI 10-13
OCI Functions That Operate on BLOBs, CLOBs, NCLOBSs, and BFILEs 10-13
OCI Functions to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values 10-13
OCI Functions to Read or Examine Persistent LOB and External LOB (BFILE)
Values 10-14
OCI Functions for Temporary LOBs 10-14
OCI Read-Only Functions for BFILESs 10-14
OCI LOB Locator Functions 10-15
Topic 10-15
OCI Functions to Open and Close Internal and External LOBs 10-15
OCI LOB Examples 10-15
Further Information About OCI 10-16
Using C++ (OCCI) to Work With LOBs 10-16
OCCI Classes for LOBs 10-17
Clob Class 10-17
Blob Class 10-17
Bfile Class 10-18
Fixed-Width Character Set Rules 10-18
Varying-Width Character Set Rules 10-18
Offset and Amount Parameters for Other OCCI Operations 10-19
NCLOBs in OCCI 10-19
Amount Parameter for OCCI LOB copy() Methods 10-19
Amount Parameter for OCCI read() Operations 10-19
Further Information About OCCI 10-20
OCCI Methods That Operate on BLOBs, BLOBs, NCLOBs, and BFILEs 10-20
OCCI Methods to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values 10-20

ORACLE iX

OCCI Methods to Read or Examine Persistent LOB and BFILE Values 10-21

OCCI Read-Only Methods for BFILES 10-21
Other OCCI LOB Methods 10-21
OCCI Methods to Open and Close Internal and External LOBs 10-22
Using C/C++ (Pro*C) to Work With LOBs 10-22
Providing an Allocated Input Locator Pointer That Represents LOB 10-22
Pro*C/C++ Statements That Operate on BLOBs, CLOBs, NCLOBSs, and BFILEs 10-23
Pro*C/C++ Embedded SQL Statements to Modify Persistent LOB Values 10-23
Pro*C/C++ Embedded SQL Statements for Introspection of LOBs 10-24
Pro*C/C++ Embedded SQL Statements for Temporary LOBs 10-24
Pro*C/C++ Embedded SQL Statements for BFILES 10-24
Pro*C/C++ Embedded SQL Statements for LOB Locators 10-24
Pro*C/C++ Embedded SQL Statements to Open and Close LOBs 10-25
Using COBOL (Pro*COBOL) to Work With LOBs 10-25
Providing an Allocated Input Locator Pointer That Represents LOB 10-25
Pro*COBOL Statements That Operate on BLOBs, CLOBs, NCLOBs, and
BFILEs 10-26
Pro*COBOL Embedded SQL Statements to Modify Persistent LOB Values 10-26
Pro*COBOL Embedded SQL Statements for Introspection of LOBs 10-27
Pro*COBOL Embedded SQL Statements for Temporary LOBs 10-27
Pro*COBOL Embedded SQL Statements for BFILES 10-27
Pro*COBOL Embedded SQL Statements for LOB Locators 10-27
Pro*COBOL Embedded SQL Statements for Opening and Closing LOBs and
BFILEs 10-28
Using Java (JDBC) to Work With LOBs 10-28
Modifying Internal Persistent LOBs Using Java 10-28
Reading Internal Persistent LOBs and External LOBs (BFILES) With Java 10-28
BLOB, CLOB, and BFILE Classes 10-29
Calling DBMS_LOB Package from Java (JDBC) 10-29
Prefetching LOBs to Improve Performance 10-29
Zero-Copy Input/Output for SecureFiles to Improve Performance 10-29
Zero-Copy Input/Output on the Server 10-30
Zero-Copy Input/Output in the JIDBC Thin Driver 10-30
JDBC-OCI Driver Considerations 10-30
Referencing LOBs Using Java (JDBC) 10-30
Using OracleResultSet: BLOB and CLOB Objects Retrieved 10-30
JDBC Syntax References and Further Information 10-31
JDBC Methods for Operating on LOBs 10-31
JDBC oracle.sql.BLOB Methods to Modify BLOB Values 10-32
JDBC oracle.sql.BLOB Methods to Read or Examine BLOB Values 10-32
JDBC oracle.sql.BLOB Methods and Properties for Streaming BLOB Data 10-32
JDBC oracle.sql.CLOB Methods to Modify CLOB Values 10-33

ORACLE X

JDBC oracle.sql.CLOB Methods to Read or Examine CLOB Value 10-33
JDBC oracle.sql.CLOB Methods and Properties for Streaming CLOB Data 10-33
JDBC oracle.sql.BFILE Methods to Read or Examine External LOB (BFILE)
Values 10-34
JDBC oracle.sql.BFILE Methods and Properties for Streaming BFILE Data 10-34
JDBC Temporary LOB APIs 10-34
JDBC: Opening and Closing LOBs 10-35
JDBC: Opening and Closing BLOBs 10-35
Opening the BLOB Using JDBC 10-36
Checking If the BLOB Is Open Using JDBC 10-36
Closing the BLOB Using JDBC 10-36
JDBC: Opening and Closing CLOBs 10-37
Opening the CLOB Using JDBC 10-37
Checking If the CLOB Is Open Using JDBC 10-37
Closing the CLOB Using JDBC 10-38
JDBC: Opening and Closing BFILEs 10-38
Opening BFILEs 10-38
Checking If the BFILE Is Open 10-39
Closing the BFILE 10-39
Usage Example (OpenCloselLob.java) 10-39
Truncating LOBs Using JDBC 10-41
JDBC: Truncating BLOBs 10-41
JDBC: Truncating CLOBs 10-41
JDBC BLOB Streaming APls 10-42
JDBC CLOB Streaming APIs 10-43
BFILE Streaming APIs 10-44
JDBC BFILE Streaming Example (NewStreamLob.java) 10-44
JDBC and Empty LOBs 10-47
Oracle Provider for OLE DB (OraOLEDB) 10-48
Overview of Oracle Data Provider for .NET (ODP.NET) 10-48
11 LOB APIs for BFILE Operations
Supported Environments for BFILE APIs 11-2
About Accessing BFILESs 11-3
Directory Objects 11-3
Initializing a BFILE Locator 11-4
How to Associate Operating System Files with a BFILE 11-4
BFILENAME and Initialization 11-5
Characteristics of the BFILE Data Type 11-5
DIRECTORY Name Specification 11-6
On Windows Platforms 11-6

ORACLE

Xi

BFILE Security 11-6

Ownership and Privileges 11-6
Read Permission on a DIRECTORY Object 11-7
SQL DDL for BFILE Security 11-8
SQL DML for BFILE Security 11-8
Catalog Views on Directories 11-8
Guidelines for DIRECTORY Usage 11-8
BFILEs in Shared Server (Multithreaded Server) Mode 11-9
External LOB (BFILE) Locators 11-9
When Two Rows in a BFILE Table Refer to the Same File 11-10

BFILE Locator Variable 11-10
Guidelines for BFILEs 11-10

About Loading a LOB with BFILE Data 11-11
About Opening a BFILE with OPEN 11-13
About Opening a BFILE with FILEOPEN 11-14
About Determining Whether a BFILE Is Open Using ISOPEN 11-15
About Determining Whether a BFILE Is Open with FILEISOPEN 11-16
About Displaying BFILE Data 11-17
About Reading Data from a BFILE 11-17
About Reading a Portion of BFILE Data Using SUBSTR 11-19
Comparing All or Parts of Two BFILES 11-20
Checking If a Pattern Exists in a BFILE Using INSTR 11-20
Determining Whether a BFILE Exists 11-21
Getting the Length of a BFILE 11-22
About Assigning a BFILE Locator 11-22
Getting Directory Object Name and File Name of a BFILE 11-23
About Updating a BFILE by Initializing a BFILE Locator 11-24
Closing a BFILE with FILECLOSE 11-25
Closing a BFILE with CLOSE 11-25
Closing All Open BFILEs with FILECLOSEALL 11-27
About Inserting a Row Containing a BFILE 11-27

12 Using LOB APIs

Supported Environments 12-2
About Appending One LOB to Another 12-3
About Appending Buffer Content to LOB 12-4
About Determining Character Set Form 12-5
About Determining Character Set ID 12-5
Loading a LOB with Data from a BFILE 12-6
About Loading a BLOB with Data from a BFILE 12-7

ORACLE Xii

Loading a CLOB or NCLOB with Data from a BFILE 12-9

About PL/SQL: Loading Character Data from a BFILE into a LOB 12-10
About PL/SQL: Loading Segments of Character Data into Different LOBs 12-10
Determining Whether a LOB is Open 12-10
Java (JDBC): Checking If a LOB Is Open 12-11
Checking If a CLOB Is Open 12-11
Checking If a BLOB Is Open 12-11

About Displaying LOB Data 12-12
About Reading Data from a LOB 12-13
About LOB Array Read 12-14
Reading a Portion of a LOB (SUBSTR) 12-21
Comparing All or Part of Two LOBs 12-21
Patterns: Checking for Patterns in a LOB Using INSTR 12-22
Length: Determining the Length of a LOB 12-22
Copying All or Part of One LOB to Another LOB 12-23
Copying a LOB Locator 12-24
Equality: Checking If One LOB Locator Is Equal to Another 12-25
About Determining Whether LOB Locator Is Initialized 12-26
About Appending to a LOB 12-26
About Writing Data to a LOB 12-28
LOB Array Write 12-30
About Trimming LOB Data 12-35
About Erasing Part of a LOB 12-37
Determining Whether a LOB instance Is Temporary 12-38
Java (JDBC): Determining Whether a BLOB Is Temporary 12-38
Converting a BLOB to a CLOB 12-39
Converting a CLOB to a BLOB 12-39
Ensuring Read Consistency 12-39

Part IV Application Design with LOBs

13 LOB Storage with Applications

Tables That Contain LOBs 13-1
Persistent LOBs Initialized to NULL or Empty 13-1
Setting a Persistent LOB to NULL 13-2

Setting a Persistent LOB to Empty 13-2
Initializing LOBs 13-2
Initializing Persistent LOB Columns and Attributes to a Value 13-3
Initializing BFILEs to NULL or a File Name 13-3
Restriction on First Extent of a LOB Segment 13-3

ORACLE Xiii

Data Types for LOB Columns
LOBs Compared to LONG and LONG RAW Types
Varying-Width Character Data Storage in LOBs
Converting Character Sets Implicitly with LOBs
LOB Storage Parameters
Inline and Out-of-Line LOB Storage
Defining Tablespace and Storage Characteristics for Persistent LOBs
Assigning a LOB Data Segment Name
LOB Storage Characteristics for LOB Column or Attribute
TABLESPACE and LOB Index
Tablespace for LOB Index in Non-Partitioned Table
PCTVERSION
RETENTION Parameter for BasicFiles LOBs
RETENTION Parameter for SecureFiles LOBs
CACHE / NOCACHE / CACHE READS
CACHE / NOCACHE / CACHE READS: LOB Values and Buffer Cache
LOGGING / NOLOGGING Parameter for BasicFiles LOBs
LOBs Always Generate Undo for LOB Index Pages
When LOGGING is Set Oracle Generates Full Redo for LOB Data Pages
LOGGING/FILESYSTEM_LIKE_LOGGING for SecureFiles LOBs
CACHE Implies LOGGING
SecureFiles and an Efficient Method of Generating REDO and UNDO
FILESYSTEM_LIKE_LOGGING is Useful for Bulk Loads or Inserts
CHUNK
The Value of CHUNK
Set INITIAL and NEXT to Larger than CHUNK
ENABLE or DISABLE STORAGE IN ROW Clause
Guidelines for ENABLE or DISABLE STORAGE IN ROW
LOB Columns Indexing
Domain Indexing on LOB Columns
Text Indexes on LOB Columns
Function-Based Indexes on LOBs
Extensible Indexing on LOB Columns
Extensible Optimizer
Oracle Text Indexing Support for XML
LOB Manipulation in Partitioned Tables
About Manipulating LOBs in Partitioned Tables
Partitioning a Table Containing LOB Columns
Creating an Index on a Table Containing Partitioned LOB Columns
Moving Partitions Containing LOBs
Splitting Partitions Containing LOBs

ORACLE

13-3

13-4

13-4

13-4

13-5

13-6

13-7

13-7

13-8

13-8

13-8

13-9
13-10
13-10
13-11
13-11
13-11
13-12
13-12
13-12
13-13
13-13
13-13
13-13
13-14
13-15
13-15
13-15
13-16
13-16
13-16
13-17
13-17
13-18
13-18
13-18
13-19
13-19
13-20
13-20
13-20

Xiv

Merging Partitions Containing LOBs 13-20

LOBs in Index Organized Tables 13-21
Restrictions for LOBs in Partitioned Index-Organized Tables 13-22
Updating LOBs in Nested Tables 13-22

14 Advanced Design Considerations

Opening Persistent LOBs with the OPEN and CLOSE Interfaces 14-1
Index Performance Benefits of Explicitly Opening a LOB 14-1
Closing Explicitly Open LOB Instances 14-2

Read-Consistent Locators 14-2
A Selected Locator Becomes a Read-Consistent Locator 14-3
Example of Updating LOBs and Read-Consistency 14-3
Example of Updating LOBs Through Updated Locators 14-5
Example of Updating a LOB Using SQL DML and DBMS_LOB 14-6
Example of Using One Locator to Update the Same LOB Value 14-8
Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable 14-9

LOB Locators and Transaction Boundaries 14-11
About LOB Locators and Transaction Boundaries 14-11
Read and Write Operations on a LOB Using Locators 14-12
Selecting the Locator Outside of the Transaction Boundary 14-12
Selecting the Locator Within a Transaction Boundary 14-13
LOB Locators Cannot Span Transactions 14-14
Example of Locator Not Spanning a Transaction 14-14

LOBs in the Object Cache 14-15

Terabyte-Size LOB Support 14-16
About Terabyte-Size LOB Support 14-16
Maximum Storage Limit for Terabyte-Size LOBs 14-17
Using Terabyte-Size LOBs with JDBC 14-18
Using Terabyte-Size LOBs with the DBMS_LOB Package 14-18
Using Terabyte-Size LOBs with OCI 14-18

Guidelines for Creating Gigabyte LOBs 14-19
Creating a Tablespace and Table to Store Gigabyte LOBs 14-19

15 Performance Guidelines

LOB Performance Guidelines 15-1
All LOBs 15-1
Persistent LOBs 15-2
Temporary LOBs 15-2

Moving Data to LOBs in a Threaded Environment 15-5

ORACLE XV

LOB Access Statistics 15-5
Example of Retrieving LOB Access Statistics 15-6

Part V' LOB Administration

16 Managing LOBs: Database Administration

Database Utilities for Loading Data into LOBs 16-1
About Using SQL*Loader to Load LOBs 16-1
About Using SQL*Loader to Populate a BFILE Column 16-3
About Using Oracle Data Pump to Transfer LOB Data 16-5

Temporary LOB Management 16-6

BFILEs Management 16-6
Rules for Using Directory Objects and BFILEs 16-6
Setting Maximum Number of Open BFILEs 16-7

Changing Tablespace Storage for a LOB 16-7

Managing LOB Signatures 16-8

17 Migrating Columns from LONGs to LOBs

Benefits of Migrating LONG Columns to LOB Columns 17-1
Preconditions for Migrating LONG Columns to LOB Columns 17-2
Dropping a Domain Index on a LONG Column Before Converting to a LOB 17-2
Preventing Generation of Redo Space on Tables Converted to LOB Data Types 17-2
Determining how to Optimize the Application Using utldtree.sql 17-3
Converting Tables from LONG to LOB Data Types 17-3
Migration Issues 17-3
Using ALTER TABLE to Convert LONG Columns to LOB Columns 17-4
Copying a LONG to a LOB Column Using the TO_LOB Operator 17-4
Online Redefinition of Tables with LONG Columns 17-5
Using Oracle Data Pump to Migrate a Database 17-8
Migrating Applications from LONGs to LOBs 17-8
About Migrating Applications from Longs to LOBs 17-8
LOB Columns Are Not Allowed in Clustered Tables 17-9
LOB Columns Are Not Allowed in AFTER UPDATE OF Triggers 17-9
Rebuilding Indexes on Columns Converted from LONG to LOB Data Types 17-9
Empty LOBs Compared to NULL and Zero Length LONGs 17-10
Overloading with Anchored Types 17-10
Some Implicit Conversions Are Not Supported for LOB Data Types 17-11

ORACLE Xvi

Part VI Oracle File System (OFS) Server

18 Introducing Network File System (NFS)

Prerequisites to Access Storage Through NFS Server 18-1
NFS Security 18-1
Kerberos 18-2
Configuring Kerberos Server in Linux 18-2

19 Using OFS

Limitations of using OFS 19-1
OFS Configuration Parameters 19-1
OFS Client Interface 19-1
DBMS_FS Package 19-1
Views for OFS 19-2

Part VIl Database File System (DBFS)

20 Introducing the Database File System

Why a Database File System? 20-1
What Is Database File System (DBFS)? 20-1
About DBFS 20-1
DBFS Server 20-2
DBFS Client 20-3
What Is a Content Store? 20-4

721 DBFS SecureFiles Store

Setting Up a SecureFiles Store 21-1
About Managing Permissions 21-1
Creating or Setting Permissions 21-2
Creating a SecureFiles File System Store 21-2
Accessing Tables that Hold SecureFiles System Store Data 21-4
Initializing SecureFiles Store File Systems 21-4
Comparison of SecureFiles LOBs to BasicFiles LOBs 21-4

Using a DBFS SecureFiles Store File System 21-5
DBFS Content API Working Example 21-5
Dropping SecureFiles Store File Systems 21-6

ORACLE" XVii

About DBFS SecureFiles Store Package, DBMS_DBFS_SFS 21-6
Database File System (DBFS)— POSIX File Locking 21-7
About Advisory Locking 21-8
About Mandatory Locking 21-8
File Locking Support 21-8
Compatibility and Migration Factors of Database Filesystem—File Locking 21-9
Examples of Database Filesystem—TFile Locking 21-9
File Locking Behavior 21-10
Scheduling File Locks 21-11
Greedy Scheduling 21-11
Fair Scheduling 21-12

22 DBFS Hierarchical Store
About the Hierarchical Store Package, DBMS_DBFS_HS 22-1
Ways to Use DBFS Hierarchial Store 22-1
Setting up the Store 22-2
Managing a HS Store Wallet 22-2
Creating, Registering, and Mounting the Store 22-3
Using the Hierarchical Store 22-3
Using Hierarchical Store as a File System 22-4
Using Hierarchical Store as an Archive Solution For SecureFiles LOBs 22-4
Dropping a Hierarchical Store 22-4
Compression to Use with the Hierarchical Store 22-4
Program Example Using Tape 22-5
Program Example Using Amazon S3 22-9
Database File System Links 22-14
About Database File System Links 22-14
Ways to Create Database File System Links 22-15
Database File System Links Copy 22-16
Copying a Linked LOB Between Tables 22-17
Online Redefinition and DBFS Links 22-17
Transparent Read 22-17
The DBMS_DBFS_HS Package 22-17
Constants for DBMS_DBFS_HS Package 22-17
Methods for DBMS_DBFS_HS Package 22-18
Views for DBFS Hierarchical Store 22-19
DBA Views 22-19
User Views 22-20
ORACLE Xviii

23 DBFS Content API

Overview of DBFS Content API 23-1
Stores and DBFS Content API 23-2
Getting Started with DBMS_DBFS_CONTENT Package 23-3
DBFS Content API Role 23-3
Path Name Constants and Types 23-3
Path Properties 23-3
Content IDs 23-4
Path Name Types 23-4
Store Features 23-4
Lock Types 23-5
Standard Properties 23-5
Optional Properties 23-6
User-Defined Properties 23-6
Property Access Flags 23-6
Exceptions 23-6
Property Bundles 23-7
Store Descriptors 23-7
Administrative and Query APIs 23-8
Registering a Content Store 23-8
Unregistering a Content Store 23-9
Mounting a Registered Store 23-9
Unmounting a Previously Mounted Store 23-10
Listing all Available Stores and Their Features 23-10
Listing all Available Mount Points 23-10
Looking Up Specific Stores and Their Features 23-11
Querying DBFS Content API Space Usage 23-11
DBFS Content API Session Defaults 23-12
DBFS Content API Interface Versioning 23-12
Notes on DBFS Content API Path Names 23-12
DBFS Content API Creation Operations 23-13
DBFS Content API Deletion Operations 23-14
DBFS Content API Path Get and Put Operations 23-14
DBFS Content APl Rename and Move Operations 23-15
Directory Listings 23-16
DBFS Content API Directory Navigation and Search 23-16
DBFS Content API Locking Operations 23-17
DBFS Content API Access Checks 23-17
DBFS Content API Abstract Operations 23-17
DBFS Content API Path Normalization 23-18

ORACLE XixX

DBFS Content API Statistics Support 23-18
DBFS Content API Tracing Support 23-19
Resource and Property Views 23-20

24 Creating Your Own DBFS Store

Overview of DBFS Store Creation and Use 24-1
DBFS Content Store Provider Interface (DBFS Content SPI) 24-2
Creating a Custom Provider 24-3
Mechanics 24-4
Installation and Setup 24-4

TBFS Use 24-4

TBFS Internals 24-5
TBFS.SQL 24-6
TBL.SQL 24-6
spec.sql 24-7
body.sql 24-16
capi.sql 24-29

25 Using DBFS

DBFS Installation 25-1
Creating a DBFS File System 25-1
Privileges Required to Create a DBFS File System 25-1
Advantages of Non-Partitioned Versus Partitioned DBFS File Systems 25-2
Creating a Non-Partitioned File System 25-2
Creating a Partitioned File System 25-2
Dropping a File System 25-3
DBFS File System Access 25-3
DBFS Client Prerequisites 25-3
DBFS Client Command-Line Interface Operations 25-4
About the DBFS Client Command-Line Interface 25-4
Creating Content Store Paths 25-4
Creating a Directory 25-5

Listing a Directory 25-5
Copying Files and Directories 25-5
Removing Files and Directories 25-6

DBFS Mounting Interface (Linux and Solaris Only) 25-6
Installing FUSE on Solaris 11 SRU7 and Later 25-7
Mounting the DBFS Store 25-7
Solaris-Specific Privileges 25-7

ORACLE XX

About the Mount Command for Solaris and Linux 25-7

Mounting a File System with a Wallet 25-8
Mounting a File System with Password at Command Prompt 25-9
Mounting a File System with Password Read from a File 25-9
Unmounting a File System 25-9
Mounting DBFS Through fstab Utility for Linux 25-10
Mounting DBFS Through the vfstab Utility for Solaris 25-10
Restrictions on Mounted File Systems 25-11
Restrictions on Types of Files Stored at DBFS Mount Points 25-11

File System Security Model 25-12
About the File System Security Model 25-12
Enabling Shared Root Access 25-12
About DBFS Access Among Multiple Database Users 25-12
Establishing DBFS Access Sharing Across Multiple Database Users 25-13
HTTP, WebDAV, and FTP Access to DBFS 25-16
Internet Access to DBFS Through XDB 25-17
Web Distributed Authoring and Versioning (WebDAV) Access 25-17
FTP Access to DBFS 25-18
HTTP Access to DBFS 25-18
DBFS Administration 25-19
Using Oracle Wallet with DBFS Client 25-19
DBFS Diagnostics 25-20
Preventing Data Loss During Failover Events 25-20
Bypassing Client-Side Write Caching 25-21
Backing up DBFS 25-21
DBFS Backup at the Database Level 25-21
DBFS Backup Through a File System Utility 25-21
Small File Performance of DBFS 25-21
Enabling Advanced SecureFiles LOB Features for DBFS 25-22
Shrinking and Reorganizing DBFS Filesystems 25-22
About Changing DBFS Filesystems 25-22
Advantages of Online Filesystem Reorganization 25-23
Determining Availability of Online Filesystem Reorganization 25-23
Invoking Online Filesystem Reorganization 25-24
Required Permissions for Online Filesystem Reorganization 25-25

A LOB Demonstration Files

PL/SQL LOB Demonstration Files A-1
OCI LOB Demonstration Files A-3

ORACLE XXi

Java LOB Demonstration Files

Glossary

A-4

Index

ORACLE"

XXii

Preface

This guide describes database features that support application development using
SecureFiles and Large Object (LOB) data types and Database File System (DBFS).
The information in this guide applies to all platforms, and does not include system-
specific information.

Audience

Oracle Database SecureFiles and Large Objects Developer's Guide is intended for
programmers who develop new applications using LOBs and DBFS, and those who
have previously implemented this technology and now want to take advantage of new
features.

Efficient and secure storage of multimedia and unstructured data is increasingly
important, and this guide is a key resource for this topic within the Oracle Application
Developers documentation set.

Feature Coverage and Availability

Oracle Database SecureFiles and Large Objects Developer's Guide contains
information that describes the SecureFiles LOB and BasicFiles LOB features and
functionality of Oracle Database 12c¢ Release 2 (12.2).

Prerequisites for Using LOBs

Oracle Database includes all necessary resources for using LOBs in an application;
however, there are some restrictions, described in "LOB Rules and Restrictions" and
"Restrictions for LOBs in Partitioned Index-Organized Tables ".

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

For more information, see the following manuals:

ORACLE XXiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

* Oracle Database 2 Day Developer's Guide

* Oracle Database Development Guide

* Oracle Database Utilities

* Oracle XML DB Developer’s Guide

e Oracle Database PL/SQL Packages and Types Reference

* Oracle Database Data Cartridge Developer's Guide

e Oracle Call Interface Programmer's Guide

e Oracle C++ Call Interface Programmer's Guide

* Pro*C/C++ Programmer's Guide

* Pro*COBOL Programmer's Guide

* Oracle Database Programmer's Guide to the Oracle Precompilers
* Pro*FORTRAN Supplement to the Oracle Precompilers Guide

Java
The Oracle Java documentation set includes the following:

e Oracle Database JDBC Developer’s Guide
e Oracle Database Java Developer’s Guide

Basic References

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN)

http://ww. oracl e. com t echnet wor k/ i ndex. ht m

For the latest version of the Oracle documentation, including this guide, visit

http://ww. oracl e. com t echnet wor k/ docunent ati on/i ndex. ht m

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLSs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE XXiV

http://www.oracle.com/technetwork/index.html
http://www.oracle.com/technetwork/documentation/index.html

Getting Started

This part introduces Large Objects (LOBs) and discusses general concepts for using
them in your applications.

This part contains these chapters:

e Introduction to Large Objects and SecureFiles

* Working with LOBs

e Using Oracle LOB Storage

* Operations Specific to Persistent and Temporary LOBs
* Distributed LOBs

* DDL and DML Statements with LOBs

ORACLE

Introduction to Large Objects and
SecureFiles

What Are

Large Objects (LOBSs), SecureFiles LOBs, and Database File System (DBFS) work
together with various database features to support application development.

Large Objects are used to hold large amounts of data inside Oracle Database,
SecureFiles provides performance equal to or better than file system performance
when using Oracle Database to store and manage Large Objects, and DBFS provides
file system access to files stored in Oracle Database.

Topics:

* What Are Large Objects?

* Why Use Large Objects?

* Why Not Use LONGs?

» Different Kinds of LOBs

* LOB Locators

» Database Semantics for Internal and External LOBs
» Large Object Data Types

» About Object Data Types and LOBs

e Storage and Creation of Other Data Types with LOBs
* BasicFiles and SecureFiles LOBs

* Database File System (DBFS)

Large Objects?

Large Objects (LOBSs) are a set of data types that are designed to hold large amounts
of data.

The maximum size for a single LOB can range from 8 terabytes to 128 terabytes
depending on how your database is configured. Storing data in LOBs enables you to
access and manipulate the data efficiently in your application.

Why Use Large Objects?

ORACLE

Large objects allow you to store large amounts of data in several types of structures.
Topics:

o Data Types that Use Large Objects

* LOBs Used for Semistructured Data

* LOBs Used for Unstructured Data

1-1

Chapter 1
Why Use Large Objects?

Data Types that Use Large Objects

Large objects are suitable for semistructured and unstructured data.

Large object features allow you to store these kinds of data in the database and in
operating system files that are accessed from the database.

e Semistructured data

Semistructured data has a logical structure that is not typically interpreted by the
database, for example, an XML document that your application or an external
service processes. Oracle Database provides features such as Oracle XML DB,
Oracle Multimedia, and Oracle Spatial and Graph to help your application work
with semistructured data.

e Unstructured data

Unstructured data is easily not broken down into smaller logical structures and is
not typically interpreted by the database or your application, such as a
photographic image stored as a binary file.

When you develop applications, you encounter different types of data, not all of which
are suitable for large objects. For example, there is no need for the following to be
created as large objects:

* Simple structured data

Simple structured data can be organized into relational tables that are structured
based on business rules.

e Complex structured data

Complex structured data is more complex than simple structured data and is
suited for the object-relational features of the Oracle database such as collections,
references, and user-defined types.

With the growth of the Internet and content-rich applications, it has become imperative
for Oracle Database to provide LOB support that:

e Can store unstructured and semistructured data in an efficient manner
* Is optimized for large amounts of data

* Provides a uniform way of accessing data stored within the database or outside
the database

LOBs Used for Semistructured Data

ORACLE

Semistructured data include document files such as XML documents or word
processor files, which contain data in a logical structure that is processed or
interpreted by an application, and is not broken down into smaller logical units when
stored in the database.

Applications that use semistructured data often use large amounts of character data.
The Character Large Object (CLOB) and National Character Large Object (NCLOB) data
types are ideal for storing and manipulating this kind of data.

Binary File objects (BFI LE data types) can also store character data. You can use
BFI LEs to load read-only data from operating system files into CLOB or NCLCB instances
that you then manipulate in your application.

1-2

Chapter 1
Why Not Use LONGs?

LOBs Used for Unstructured Data

Unstructured data is data that cannot be decomposed into standard components.

This is in contrast to structured data, such as data about an employee typically
containing these components: a name, stored as a string; an identifier, such as an ID
number; a salary; and so on.

Unstructured data, such as a photograph, consists of a long stream of 1s and 0s.
These bits are used to switch pixels on or off so that you can see the picture on a
display, but the bits are not broken down into any standard components for database
storage.

Also, unstructured data such as text, graphic images, still video clips, full motion video,
and sound waveforms tends to be large in size. A typical employee record may be a
few hundred bytes, while even small amounts of multimedia data can be thousands of
times larger.

SQL data types that are ideal for large amounts of unstructured binary data include the
BLOB data type (Binary Large Object) and the BFI LE data type (Binary File object).

Why Not Use LONGs?

ORACLE

Oracle Database supports LONGand LOB data types. However, LOBs provide added
benefits described below.

Using LOB data types is recommended for storing large amounts of structured and
semistructured data (from Oracle8i and on). Applications developed for use with
Oracle7 and earlier used the LONG or LONG RAWdata type to store large amounts of
unstructured data.

You can use LONGto-LOB migration to easily migrate your existing applications that
access LONG columns, to use LOB columns.

Advantages of LOB data types over LONG and LONG RAWtypes:

* LOB Capacity: LOBs can store much larger amounts of data. LOBs can store 4
GB of data or more depending on your system configuration. LONG and LONG RAW
types are limited to 2 GB of data.

e Number of LOB columns in a table: A table can have multiple LOB columns. LOB
columns in a table can be of any LOB type. In Oracle7 Release 7.3 and higher,
tables are limited to a single LONG or LONG RAWcolumn.

» Random piece-wise access: LOBs support random access to data, but LONGs
support only sequential access.

* LOBs can also be object attributes.

" See Also:
Migrating Columns from LONGs to LOBs

1-3

Chapter 1
Different Kinds of LOBs

Different Kinds of LOBs

Different kinds of LOBs can be stored in the database or in external files.

LOBs in the database are sometimes also referred to as internal LOBs or internal
persistent LOBs.

LOBs can be internal or external:

* Internal LOBs
» External LOBs and the BFILE Data Type

Internal LOBSs

LOBs in the database are stored inside database tablespaces in a way that optimizes
space and provides efficient access.

SQL Data Types for Internal LOBs

The following SQL data types are supported for declaring internal LOBs: BLOB, CLOB,
and NCLOB.

¢ See Also:
Large Object Data Types

Persistent and Temporary LOBs
Persistent and temporary LOBs are both internal LOBs (LOBs in the database).

» A persistent LOB is a LOB instance that exists in a table row in the database.

* Atemporary LOB instance is created when you instantiate a LOB only within the
scope of your local application.

A temporary instance becomes a persistent instance when you insert the instance into
a table row.

Persistent LOBs use copy semantics and participate in database transactions. You
can recover persistent LOBs in the event of transaction or media failure, and any
changes to a persistent LOB value can be committed or rolled back. In other words, all
the Atomicity, Consistency, Isolation, and Durability (ACID) properties that apply to
database objects apply to persistent LOBs.

External LOBs and the BFILE Data Type

ORACLE

External LOBs are data objects stored in operating system files, outside the database
tablespaces.

BFI LE is the SQL data type that the database uses to access external LOBs and is the
only SQL data type available for external LOBs.

1-4

Chapter 1
LOB Locators

BFI LEs are read-only data types. The database allows read-only byte stream access to
data stored in BFI LEs. You cannot write to or update a BFI LE from within your
application.

The database uses reference semantics with BFI LE columns. Data stored in a table
column of type BFI LE is physically located in an operating system file, not in the
database.

You typically use BFI LEs to hold:

* Binary data that does not change while your application is running, such as
graphics

» Data that is loaded into other large object types, such as a BLOB or CLOB, where the
data can then be manipulated
« Data that is appropriate for byte-stream access, such as multimedia

Any storage device accessed by your operating system can hold BFI LE data, including
hard disk drives, CD-ROMs, PhotoCDs, and DVDs. The database can access BFI LEs
provided the operating system supports stream-mode access to the operating system
files.

Note:

External LOBs do not participate in transactions. Any support for integrity
and durability must be provided by the underlying file system as governed by
the operating system.

LOB Locators

ORACLE

A LOB instance has a locator and a value.

A LOB locator is a reference to where the LOB value is physically stored. The LOB
value is the data stored in the LOB.

When you use a LOB in an operation such as passing a LOB as a parameter, you are
actually passing a LOB locator. For the most part, you can work with a LOB instance in
your application without being concerned with the semantics of LOB locators. There is
no requirement to dereference LOB locators, as is required with pointers in some
programming languages.

¢ See Also:

e "LOB Locator and LOB Value"
« "LOB Locators and BFILE Locators"

e "LOB Storage Parameters"

1-5

Chapter 1
Database Semantics for Internal and External LOBSs

Database Semantics for Internal and External LOBs

In all programmatic environments, database semantics differ between internal LOBs
and external LOBs as follows:

* Internal LOBs use copy semantics

With copy semantics, both the LOB locator and LOB value are logically copied
during insert, update, or assignment operations. This ensures that each table cell
or each variable containing a LOB, holds a unique LOB instance.

» External LOBs use reference semantics

With reference semantics, only the LOB locator is copied during insert operations.
Note that update operations do not apply to external LOBs because external LOBs
are read-only.

¢ See Also:
External LOBs and the BFILE Data Type

Large Object Data Types

The database provides a set of large object data types as SQL data types where the
term LOB generally refers to the set.

In general, the descriptions given for the data types in this table and related sections
also apply to the corresponding data types provided for other programmatic
environments.

Table 1-1 describes each large object data type that the database supports and
describes the kind of data that uses it.

Table 1-1 Large Object Data Types

|
SQL Data Type Description

CLOB Character Large Object

Stores string data in the database character set format. Used for large
strings or documents that use the database character set exclusively.
Characters in the database character set are in a fixed width format.

NCLOB National Character Set Large Object

Stores string data in National Character Set format, typically large strings
or documents. Supports characters of varying width format.

ORACLE 1-6

Chapter 1
About Object Data Types and LOBs

Table 1-1 (Cont.) Large Object Data Types

___|
SQL Data Type Description

BFI LE External Binary File
A binary file stored outside of the database in the host operating system file
system, but accessible from database tables. BFI LEs can be accessed
from your application on a read-only basis. Use BFI LEs to store static
data, such as image data, that is not manipulated in applications.
Any kind of data, that is, any operating system file, can be stored in a
BFI LE. For example, you can store character data in a BFI LE and then
load the BFI LE data into a CLOB, specifying the character set upon
loading.

About Object Data Types and LOBs

In general, there is no difference in the use of a LOB instance in a LOB column or as a
member of an object data type. When used in this guide, the term LOB attribute
refers to a LOB instance that is a member of an object data type. Unless otherwise
specified, discussions that apply to LOB columns also apply to LOB attributes.

Storage and Creation of Other Data Types with LOBs

You can use LOBs to create other user-defined data types or store other data types as
LOBs.

These are examples of data types provided with the database that are stored or
created with LOB types.

Topics:

e VARRAYSs Stored as LOBs

VARRAYSs Stored as LOBs

ORACLE

An instance of type VARRAY in the database is stored as an array of LOBs when you
create a table in the following scenarios:

« If the VARRAY storage clause is not specified, and the declared size of varray data
is more than 4000 bytes: VARRAY varray_item STORE AS

e If the VARRAY column properties are specified using the STORE AS LOB clause:
VARRAY varray_item STORE AS LOB . ..

< Note:

Though compressed VARRAYSs are supported, they will be less performant

1-7

Chapter 1
BasicFiles and SecureFiles LOBs

BasicFiles and SecureFiles LOBs

BasicFiles LOB and SecureFiles LOB are the two storage types used with Oracle
Database 12c.

Certain advanced features can be applied to SecureFiles LOBs, including
compression and deduplication (part of the Advanced Compression Option), and
encryption (part of the Advanced Security Option).

SecureFiles LOBs can only be created in a tablespace managed with Automatic
Segment Space Management (ASSM).

SecureFiles is the default storage mechanism for LOBs starting with Oracle Database
12c¢, and Oracle strongly recommends SecureFiles for storing and managing LOBS,
rather then BasicFiles. BasicFiles will be deprecated in a future release.

See Also:

Using Oracle LOB Storage for a discussion of both storage types

Database File System (DBFS)

Database File System (DBFS) provides a file system interface to files that are stored in
an Oracle database.

Files stored in an Oracle database are usually stored as SecureFiles LOBs, and
pathnames, directories, and other filesystem information is stored in database tables.
SecureFiles LOBs is the default storage method for DBFS, but BasicFiles LOBs can
be used in some situations.

See Also:
What Is Database File System (DBFS)?

With DBFS, you can make references from SecureFiles LOB locators to files stored
outside the database. These references are called DBFS Links or Database File
System Links.

¢ See Also:

Database File System Links

ORACLE 1-8

Working with LOBs

Working with LOBs for application development requires that you understand LOB
semantics and various techniques used with LOBs.

Most of the discussions regarding persistent LOBs assume that you are dealing with
existing LOBs in tables. The task of creating tables with LOB columns is typically
performed by your database administrator.

¢ See Also:

e Using Oracle LOB Storage for creating LOBs using the SecureFiles
paradigm

* LOB Storage with Applications for storage parameters used in creating
LOBs

Topics:

* LOB Column States

e Locking a Row Containing a LOB
e LOB Open and Close Operations
* LOB Locator and LOB Value

* LOB Locators and BFILE Locators
* LOB Access

 LOB Rules and Restrictions

LOB Column States

ORACLE

The techniques you use when accessing a cell in a LOB column differ depending on
the state of the given cell.

A cell in a LOB Column can be in one of the following states:
* NULL

The table cell is created, but the cell holds no locator or value.
* Empty

A LOB instance with a locator exists in the cell, but it has no value. The length of
the LOB is zero.

* Populated

A LOB instance with a locator and a value exists in the cell.

2-1

Chapter 2
Locking a Row Containing a LOB

Locking a Row Containing a LOB

You can lock a row containing a LOB to prevent other database users from writing to
the LOB during a transaction.

* To lock the row, specify the FOR UPDATE clause when you select the row. While the
row is locked, other users cannot lock or update the LOB until you end your
transaction.

LOB Open and Close Operations

The LOB APIs include operations that enable you to explicitly open and close a LOB
instance.

You can open and close a persistent LOB instance of any type: BLOB, CLOB, NCLOB, or
BFI LE. You open a LOB to achieve one or both of the following results:

e Openthe LOB in read-only mode

This ensures that the LOB (both the LOB locator and LOB value) cannot be
changed in your session until you explicitly close the LOB. For example, you can
open the LOB to ensure that the LOB is not changed by some other part of your
program while you are using the LOB in a critical operation. After you perform the
operation, you can then close the LOB.

e Open the LOB in read write/mode, for persistent BLOB, CLOB, or NCLOB instances
only

Opening a LOB in read/write mode defers any index maintenance on the LOB
column until you close the LOB. Opening a LOB in read/write mode is only useful if
there is an extensible index on the LOB column, and you do not want the database
to perform index maintenance every time you write to the LOB. This technique can
increase the performance of your application if you are doing several write
operations on the LOB while it is open.

If you open a LOB, then you must close the LOB at some point later in your session.
This is the only requirement for an open LOB. While a LOB instance is open, you can
perform as many operations as you want on the LOB—provided the operations are
allowed in the given mode.

¢ See Also:

Opening Persistent LOBs with the OPEN and CLOSE Interfaces for more
information about usage of these APIs

LOB Locator and LOB Value

You can use two different techniques to access and modify LOB values.
Topics:

* Using the Data Interface for LOBs

ORACLE 2-2

Chapter 2
LOB Locators and BFILE Locators

* Use the LOB Locator to Access and Modify LOB Values

Using the Data Interface for LOBs

You can perform bind and define operations on CLOB and BLOB columns in C
applications using the data interface for LOBs in OCI.

Using the data interface enables you to insert or select out data in a LOB column
without using a LOB locator as follows:

* Use a bind variable associated with a LOB column to insert character data into a
CLOB, or RAWdata into a BLOB.

» Use a define operation to define an output buffer in your application that holds
character data selected from a CLOB or RAWdata selected from a BLOB.

¢ See Also:

Data Interface for Persistent LOBs for more information on implicit
assignment of LOBs to other data types

Use the LOB Locator to Access and Modify LOB Values

You can use the LOB locator to access and modify LOB values.

A LOB locator, which is a reference to the location of the LOB value, can access the
value of a LOB instanced stored in the database. Database tables store only locators
in CLOB, BLOB, NCLOB and BFI LE columns.

Note the following with respect to LOB locators and values:

* LOB locators are passed to various LOB APIs to access or manipulate a LOB
value.

A LOB locator can be assigned to any LOB instance of the same type.

» LOB instances are characterized as temporary or persistent, but the locator is not.

LOB Locators and BFILE Locators

ORACLE

There are differences between the semantics of locators for the LOB types BLOB, CLOB,
and NCLOB, and the semantics of locators for the BFI LE type:

* For LOB types BLOB, CLOB, and NCLOB, the LOB column stores a locator to the LOB
value. Each LOB instance has its own distinct LOB locator and also a distinct copy
of the LOB value.

e For initialized BFI LE columns, the row stores a locator to the external operating
system file that holds the value of the BFI LE. Each BFI LE instance in a given row
has its own distinct locator; however, two different rows can contain a BFI LE
locator that points to the same operating system file.

Regardless of where the value of a LOB is stored, a locator is stored in the table row
of any initialized LOB column. Also, when you select a LOB from a table, the LOB
returned is always a temporary LOB.

2-3

Chapter 2
LOB Locators and BFILE Locators

< Note:

When the term locator is used without an identifying prefix term, it refers to
both LOB locators and BFI LE locators.

See Also:

LOBs Returned from SQL Functions for more information on locators for
temporary LOBs

Topics:
* Table for LOB Examples: The PM Schema print_media Table

« LOB Column Initialization

Table for LOB Examples: The PM Schema print_media Table

Many Oracle LOB examples use the print _nedi a table of the Oracle Database
Sample Schema PM

The print _nedi a table is defined as:

CREATE TABLE print_media

(product_id NUMBER(6)

, ad_id NUMBER(6)

, ad_conposite BLOB

, ad_sourcet ext CLOB

, ad_finaltext CLOB

, ad_fltextn NCLOB

, ad_textdocs_ntab textdoc_tab
, ad_photo BLOB

, ad_graphic BFI LE

, ad_header adheader _typ
) NESTED TABLE ad_t ext docs_ntab STORE AS text docs_nest edt ab;

" See Also:

"Creating a Table Containing One or More LOB Columns" for information
about creating pri nt _nedi a and its associated tables and files

LOB Column Initialization

ORACLE

LOB instances that are NULL do not have a locator.

Before you can pass a LOB instance to any LOB API routine, the instance must
contain a locator. For example, you can select a NULL LOB from a row, but you cannot
pass the instance to the PL/SQL DBMS_LOB. READ procedure. You must initialize a LOB

2-4

Chapter 2
LOB Locators and BFILE Locators

instance, which provides it with a locator, to make it non-NULL. Then you can pass the
LOB instance.

Topics:
* Initializing a Persistent LOB Column

e Initializing BFILES

Initializing a Persistent LOB Column

ORACLE

Before you can start writing data to a persistent LOB using supported programmatic
environment interfaces such as PL/SQL, OCI, Visual Basic, or Java, you must make
the LOB column/attribute non-NULL.

You can make a LOB column/attribute non-NULL by initializing the persistent LOB to
empty, using an | NSERT/UPDATE statement with the function EMPTY_BLOB for BLOBs or
EMPTY_CLOB for CLOBs and NCLOBs.

¢ Note:

You can use SQL to populate a LOB column with data even if it contains a
NULL value.

¢ See Also:

e LOB Storage with Applications for more information on initializing LOB
columns

e "Programmatic Environments That Support LOBs" for all supported
interfaces

Running the EMPTY_BLOB() or EMPTY_CLOB() function in and of itself does not raise an
exception. However, using a LOB locator that was set to empty to access or
manipulate the LOB value in any PL/SQL DBM5_LOB or OCI function raises an
exception.

Valid places where empty LOB locators may be used include the VALUES clause of an
| NSERT statement and the SET clause of an UPDATE statement.

¢ See Also:

< "Directory Objects" for details of CREATE DI RECTORY and BFI LENAMVE
usage

e Oracle Database SQL Language Reference, CREATE DI RECTORY
statement

2-5

Chapter 2
LOB Locators and BFILE Locators

< Note:

Character strings are inserted using the default character set for the
instance.

The | NSERT statement in the next example uses the pri nt _nedi a table described in
"Table for LOB Examples: The PM Schema print_media Table" and does the following:

e Populates ad_sour cet ext with the character string ' ny Oracl €'
e Setsad _conposite, ad_finaltext, and ad fltextntoan empty value
e Sets ad_phot o to NULL

* Initializes ad_gr aphi ¢ to point to the file ny_pi ct ur e located under the logical
directory ny_di rect ory_obj ect

CREATE OR REPLACE DI RECTORY ny_directory_object AS 'oracle/work/tklocal"';
I NSERT I NTO print_nedia VALUES (1726, 1, EMPTY_BLOB(),

"my Oracle', EMPTY_CLOB(), EMPTY_CLOB(),

NULL, NULL, BFILENAME('ny_directory_object', 'my_picture'), NULL);

Similarly, the LOB attributes for the ad_header columnin print_medi a can be
initialized to NULL, empty, or a character/raw literal, which is shown in the following
statement:

I NSERT | NTO print_nedia (product_id, ad_id, ad_header)
VALUES (1726, 1, adheader _typ(' AD FOR ORACLE', sysdate,
"Have Gid', EMPTY_BLOB()));

¢ See Also:

e ‘"Inserting a Row by Selecting a LOB From Another Table"
e "Inserting a LOB Value Into a Table"
e "Inserting a Row by Initializing a LOB Locator Bind Variable"

e "OClLobLocator Pointer Assignment” for details on LOB locator
semantics in OCI

Initializing BFILES

ORACLE

Before you can access BFI LE values using LOB APIs, the BFI LE column or attribute
must be made non-NULL.

You can initialize the BFI LE column to point to an external operating system file by
using the BFI LENAME function.

" See Also:

"About Accessing BFILES" for more information on initializing BFILE columns

2-6

Chapter 2
LOB Access

LOB Access

You can access a LOB instance with several techniques.
Topics:

e Accessing a LOB Using SQL

e Accessing a LOB Using the Data Interface

e Accessing a LOB Using the Locator Interface

Accessing a LOB Using SQL

You can access LOBs using SQL.

The support for columns that use LOB data types that is built into many SQL functions
enables you to use SQL semantics to access LOB columns. In most cases, you can
use the same SQL semantics on a LOB column that you would use on a VARCHAR?
column.

¢ See Also:

For details on SQL semantics support for LOBs, see SQL Semantics and
LOBs

Accessing a LOB Using the Data Interface

You can access LOBs using the data interface.

You can select a LOB directly into CHAR or RAWbuffers using LONG-to-LOB APIs in
OCI and PL/SQL interfaces. In the following PL/SQL example, ad_fi nal t ext is
selected into a VARCHAR2 buffer fi nal _ad.

DECLARE
final _ad VARCHAR2(32767);
BEG N
SELECT ad_final text INTO final _ad FROM print_medi a
WHERE product _id = 2056 and ad_id = 12001 ;
/* PUT_LINE can only output up to 255 characters at a time */

DBMS_QUTPUT. PUT_LI NE(fi nal _ad);
/* nmore calls to read final _ad */

END;

¢ See Also:

For more details on accessing LOBs using the data interface, see Data
Interface for Persistent LOBs

ORACLE 2.7

Chapter 2
LOB Rules and Restrictions

Accessing a LOB Using the Locator Interface

You can access and manipulate a LOB instance by passing the LOB locator to the
LOB APIs supplied with the database.

To access the LOB instance, use the extensive set of LOB APIs provided with each
supported programmatic environment. In OCI, a LOB locator is mapped to a locator
pointer, which is used to access the LOB value.

" Note:

In all environments, including OCI, the LOB APIs operate on the LOB value
implicitly—there is no requirement to dereference the LOB locator.

¢ See Also:

e Overview of Supplied LOB APIs

e "OCILobLocator Pointer Assignment" for details on LOB locator
semantics in OCI

LOB Rules and Restrictions

This section provides details on LOB rules and restrictions.
Topics:
* Rules for LOB Columns

e Restrictions for LOB Operations

Rules for LOB Columns

LOB columns are subject to the following rules and restrictions:

* You cannot specify a LOB as a primary key column.

* Oracle Database has limited support for remote LOBs and ORA-22992 errors can
occur when remote LOBs are used in ways that are not supported.

* Clusters cannot contain LOBs, either as key or nonkey columns.

* The following data structures are supported only as temporary instances. You
cannot store these instances in database tables:

— VARRAY of any LOB type

— VARRAY of any type containing a LOB type, such as an object type with a LOB
attribute

— ANYDATA of any LOB type
— ANYDATA of any type containing a LOB

ORACLE 2-8

ORACLE

Chapter 2
LOB Rules and Restrictions

You cannot specify LOB columns in the ORDER BY clause of a query, the GROUP BY
clause of a query, or an aggregate function.

You cannot specify a LOB column in a SELECT... DI STI NCT or SELECT... UNI QUE
statement or in a join. However, you can specify a LOB attribute of an object type
column in a SELECT... DI STI NCT statement, a query that uses the UNI ON, or a M NUS
set operator if the object type of the column has a MAP or ORDER function defined on
it.

The first (I NI TI AL) extent of a LOB segment must contain at least three database
blocks.

The minimum extent size is 14 blocks. For an 8K block size (the default), this is
equivalent to 112K.

When creating an AFTER UPDATE DML trigger, you cannot specify a LOB column in
the UPDATE CF clause.

You cannot specify a LOB column as part of an index key. However, you can
specify a LOB column in the indextype specification of a domain index. In addition,
Oracle Text lets you define an index on a CLOB column.

In an | NSERT... AS SELECT operation, you can bind up to 4000 bytes of data to LOB
columns and attributes. There is no length restriction when you dol NSERT... AS
SELECT from one table to another table using SQL with no bind variables.

If a table has both LONG and LOB columns, you cannot bind more than 4000 bytes
of data to both the LONGand LOB columns in the same SQL statement. However,
you can bind more than 4000 bytes of data to either the LONG or the LOB column.

Note:

For a table on which you have defined an AFTER UPDATE DML trigger, if you
use OCI functions or the DBM5_L OB package to change the value of a LOB
column or the LOB attribute of an object type column, the database does not
fire the DML trigger.

See Also:

e Using Oracle LOB Storage for SecureFiles capabilities (encryption,
compression, and deduplication)

e Working with Remote LOB Columns for more information about Remote
LOBs.

e Restrictions for LOBs in Partitioned Index-Organized Tables

e Migrating Columns from LONGs to LOBs for migration limitations on
clustered tables, domain indexes, and function-based indexes

e Unsupported Use of LOBs in SQL for restrictions on SQL semantics
e Restriction on First Extent of a LOB Segment

* The Data Interface Used with Remote LOBs

2-9

Chapter 2
LOB Rules and Restrictions

Restrictions for LOB Operations

LOB operations have certain restrictions.

ORACLE

General LOB restrictions include the following:

In SQL Loader, a field read from a LOB cannot be used as an argument to a
clause.

Case-insensitive searches on CLOB columns often do not succeed. For example, to
do a case-insensitive search on a CLOB column:

ALTER SESSI ON SET NLS_COWP=LI NGUI STI C;
ALTER SESSI ON SET NLS_SORT=BI NARY_CI ;
SELECT * FROM ci _test WHERE LOAER(cl ob_col) LIKE 'aa%:;

The select fails without the LOAER function. You can do case-insensitive searches
with Oracle Text or DBMS_LOB. | NSTR() .

Session migration is not supported for BFI LEs in shared server (multithreaded
server) mode. This implies that operations on open BFI LEs can persist beyond the
end of a call to a shared server. In shared server sessions, BFl LE operations are
bound to one shared server, they cannot migrate from one server to another.

Symbolic links are not allowed in the directory paths or file names when opening
BFILEs. The entire directory path and filename is checked and the following error
is returned if any symbolic link is found:

ORA-22288: file or LOB operation FILEOPEN failed soft Iink in path

¢ See Also:

e Database Utilities for Loading Data into LOBs
e SQL Semantics and LOBs

2-10

Using Oracle LOB Storage

Oracle LOB storage has two types, SecureFiles LOB storage and BasicFiles LOB
storage, which are used with different types of tablespaces.

You design, create, and modify tables with LOB column types.
Topics:

e LOB Storage

» CREATE TABLE with LOB Storage

 ALTER TABLE with LOB Storage

* Initialization_ Compatibility and Upgrading

* Migrating Columns from BasicFiles LOBs to SecureFiles LOBs

* PL/SQL Packages for LOBs and DBFS

LOB Storage

Earlier Oracle database releases supported only one type of LOB storage. In Oracle
Database 11g, SecureFiles LOB storage was introduced; the original storage type was
given the name BasicFiles LOB storage and became the default.

LOBs created using BasicFiles LOB storage became known as BasicFiles LOBs and
LOBs created using SecureFiles LOB storage were named SecureFiles LOBs. The
CREATE TABLE statement added new keywords to indicate the differences: BASI CFI LE
specifies BasicFiles LOB storage and SECUREFI LE specifies SecureFiles LOB storage.

Beginning with Oracle Database 12c¢, SecureFiles LOB storage became the default in
the CREATE TABLE statement. If no storage type is explicitly specified, new LOB
columns use SecureFiles LOB storage.

The term LOB can represent LOBs of either storage type unless the storage type is
explicitly indicated, by name or by reference to archiving or linking (can only apply to
the SecureFiles LOB storage type).

" See Also:

Initialization, Compatibility, and Upgrading for more information about
Initialization and compatibility.

The following sections discuss the two storage types in detail:

» BasicFiles LOB Storage
* SecureFiles LOB Storage

ORACLE 3-1

Chapter 3
LOB Storage

BasicFiles LOB Storage

You must use BasicFiles LOB storage for LOB storage in tablespaces that are not
managed with Automatic Segment Space Management (ASSM).

SecureFiles LOB Storage

SecureFiles LOBs can only be created in tablespaces managed with Automatic
Segment Space Management (ASSM), unlike BasicFiles LOB storage.

SecureFiles LOB storage is designed to provide much better performance and
scalability compared to BasicFiles LOBs and to meet or exceed the performance
capabilities of traditional network file systems.

SecureFiles LOB storage supports three features that are not available with the
BasicFiles LOB storage option: compression, deduplication, and encryption.

Oracle recommends that you enable compression, deduplication, and encryption
through the CREATE TABLE statement. If you enable these features through the

ALTER TABLE statement, all SecureFiles LOB data in the table is read, modified, and
written; this can cause the database to lock the table during a potentially lengthy
operation, though there are online capabilities in the ALTER TABLE statement which can
help you avoid this issue.

Topics:
* About Advanced LOB Compression
* About Advanced LOB Deduplication

* About SecureFiles Encryption

About Advanced LOB Compression

Advanced LOB Compression transparently analyzes and compresses SecureFiles
LOB data to save disk space and improve performance.

License Requirement: You must have a license for the Oracle Advanced
Compression Option to implement Advanced LOB Compression.
" See Also:

¢ "CREATE TABLE with Advanced LOB Compression"
e "ALTER TABLE with Advanced LOB Compression"

About Advanced LOB Deduplication

Advanced LOB Deduplication enables Oracle Database to automatically detect
duplicate LOB data within a LOB column or partition, and conserve space by storing
only one copy of the data.

ORACLE 3-2

Chapter 3
CREATE TABLE with LOB Storage

License Requirement: You must have a license for the Oracle Advanced
Compression Option to implement Advanced LOB Deduplication.
See Also:

* "CREATE TABLE with Advanced LOB Deduplication"
e« "ALTER TABLE with Advanced LOB Deduplication"

About SecureFiles Encryption

SecureFiles Encryption introduces a new encryption facility for LOBs. The data is
encrypted using Transparent Data Encryption (TDE), which allows the data to be
stored securely, and still allows for random read and write access.

License Requirement: You must have a license for the Oracle Advanced Security
Option to implement SecureFiles Encryption.

¢ See Also:

e "CREATE TABLE with SecureFiles Encryption”
e "ALTER TABLE with SecureFiles Encryption”

CREATE TABLE with LOB Storage

The CREATE TABLE statement works with LOB storage using parameters that are
specific to SecureFiles or BasicFiles LOB storage, or both.

Example 3-1 provides the syntax for CREATE TABLE in Backus Naur (BNF) notation, with
LOB-specific parameters in bold.

See Also:

e CREATE TABLE LOB Storage Parameters for parameter descriptions
and the CREATE TABLE statement

e Oracle Database SQL Language Reference

Example 3-1 BNF for CREATE TABLE

CREATE [GLOBAL TEMPORARY] TABLE
[schema.]table OF
[schema.]object type
[(relational _properties)]
[ONCOWT { DELETE | PRESERVE } ROAS]
[ODclause]

ORACLE 3-3

Chapter 3
CREATE TABLE with LOB Storage

[OD_index_clause]
[physical properties]
[table properties] ;
<rel ational _properties> ::=
{ colum_definition
| { out_of line_constraint
| out_of line_ref constraint
| suppl emental _| oggi ng_props
}
}
[, { colum_definition
| { out_of line_constraint
| out_of line_ref constraint
| suppl enental _| oggi ng_props
1
l...
<colum_definition> ::=
colum data_type [SORT]
[DEFAULT expr]
[ENCRYPT encryption_spec]
[(inline_constraint [inline_constraint | ...)
| inline_ref_constraint
]
<data_type> ::=
{ Oacle_built_in_datatypes
| ANSI _supported_dat at ypes
| user_defined_types
| Oracle_supplied_types
}

<Oracle_built_in_datatypes> ::=
{ character_datatypes
| nunber_dat at ypes
| 1ong_and_raw_dat atypes
| datetine_datatypes
| | arge_object_datatypes
| rowid_datatypes
}
<l arge_obj ect _datatypes> ::=
{ BLOB | CLOB | NCLOB| BFILE}
<table_properties> ::=
[colum_properties]
[table_partitioning_clauses]
[CACHE | NOCACHE]
[parallel clause]
[ROWDEPENDENCI ES | NOROWDEPENDENCI ES]
[enabl e_disable _clause]
[enable_disable_clause |...
[row novement clause |
[AS subquery]
<col um_properties> ::=
{ object_type_col properties
| nested_table col _properties
| { varray_col properties | LOB storage clause }
[(LOB partition_storage

ORACLE 3-4

Chapter 3
CREATE TABLE with LOB Storage

[, LOB partition_storage]...
)
J
| XM.Type_col urm_properties
}
[{ object_type_col properties
| nested_table col _properties
| { varray_col properties | LOB storage clause }
[(LOB partition_storage
[, LOB partition_storage ...
)
]
| XM.Type_col um_properties
}
l...
<LOB partition_storage> ::=
PARTI TION partition
{ LOB storage_clause | varray_col properties }
[LOB storage_clause | varray_col _properties]...
[(SUBPARTI TI ON subpartition
{ LOB storage clause | varray_col _properties }
[LOB storage_clause
| varray_col _properties
l...
)
]

<LOB storage_cl ause> ::=
LOB
{ (LOB_item][, LOB.item]...)
STORE AS [SECUREFILE | BASICFILE] (LOB_storage_paraneters)
| (LOB_item
STORE AS [SECUREFI LE | BASICFI LE]
{ LOB_segname (LOB_storage_paraneters)
| LOB segnarme
| (LOB_storage paraneters)
}
}

<LOB storage_paraneters> ::=
{ TABLESPACE t abl espace
| { LOB paraneters [storage_clause]

}

| storage_clause
}
[TABLESPACE t abl espace
| { LOB paranmeters [storage_clause]
}
l...
<LOB parameters> ::=
[{ ENABLE | DI SABLE } STORAGE IN ROW
| CHUNK i nteger
| PCTVERSI ON i nt eger
| RETENTION [{ MAX | MN integer | AUTO| NONE }]
| FREEPOCLS i nteger
| LOB deduplicate clause
| LOB_conpression_cl ause

ORACLE 3-5

ORACLE

Chapter 3
CREATE TABLE with LOB Storage

| LOB encryption_clause
| { CACHE | NOCACHE | CACHE READS } [logging_clause] } }

]

<l oggi ng_cl ause> :: =

{ LOGE NG| NOLOGG NG | FILESYSTEM LI KE_LOGG NG }
<storage_clause> ::=

STORAGE

(

)

{

INFTIAL integer [K| M]
NEXT integer [K| M]
M NEXTENTS i nt eger
MAXEXTENTS { integer | UNLIM TED }
PCTI NCREASE i nt eger
FREELI STS i nt eger
FREELI ST GROUPS i nt eger
OPTIMAL [integer [K| M]
| NULL

]
BUFFER POOL { KEEP | RECYCLE | DEFAULT }

[INNTIAL integer [K| M]
| NEXT integer [K| M]
| M NEXTENTS i nt eger
| MAXEXTENTS { integer | UNLIM TED }
| MAXSIZE { { integer { K| M| G| T| P} } | UNLIMTED }
| PCTI NCREASE i nt eger
| FREELI STS i nt eger
| FREELI ST GROUPS i nt eger
| OPTIMAL [integer [K| M]
| NULL

]
| BUFFER POOL { KEEP | RECYCLE | DEFAULT }

...

<LOB_deduplicate _clause> ::=
{ DEDUPLI CATE
| KEEP_DUPLI CATES

}

<LOB_conpressi on_cl ause> :: =
{ COWPRESS [HGH | MEDIUM | LOW]
| NOCOVPRESS

}

<LOB_encryption_cl ause> ::=
{ ENCRYPT [USING 'encrypt_algorithm]

[| DENTIFI ED BY password]

| DECRYPT

}

<XM.Type_col urm_properties> ::=
XMLTYPE [COLUMN] col um

[
[

XM.Type_st orage]
XM.Schena_spec]

<XM.Type_storage> ::=

{
|

STORE AS

OBJECT RELATI ONAL

[SECUREFILE | BASICFILE] { CLOB | BINARY XM }
[{ LOB_segname [(LOB paraneters)]

3-6

Chapter 3
CREATE TABLE with LOB Storage

LOB paraneters

|
}
]
0

<varray_col properties> ::=

VARRAY varray_item
{ [substitutable_colum_clause]
STORE AS [SECUREFILE | BASICFILE] LOB
{ [LOB_segnane | (LOB_paraneters)
| LOB_segnarne

}

| substitutable_colum_clause

}

CREATE TABLE LOB Storage Parameters

The CREATE TABLE statement uses parameters relating to LOB storage, and more
specifically to either BasicFiles LOB or SecureFiles LOB.

Table 3-1 summarizes the parameters of the CREATE TABLE statement that relate to
LOB storage, where necessary noting whether a parameter is specific to BasicFiles
LOB or SecureFiles LOB storage.

Table 3-1 Parameters of CREATE TABLE Statement Related to LOBs
]

Parameter Description
BASI CFI LE Specifies BasicFiles LOB storage, the original architecture for
LOBs.

If you set the compatibility mode to Oracle Database 11g,
then BASI CFI LE functionality is enabled by default and
specified for completeness.

Starting with Oracle Database 12c¢, you must explicitly specify
the parameter BASI CFI LE to use the BasicFiles LOB storage
type. Otherwise, the CREATE TABLE statement uses
SecureFiles LOB, the current default.

For BasicFiles LOBs, specifying any of the SecureFiles LOB
options results in an error.

¢ See Also:

Initialization, Compatibility, and
Upgrading

SECUREFI LE Specifies SecureFiles LOBs storage.

Starting with Oracle Database 12c, the SecureFiles LOB
storage type, specified by the parameter SECUREFI LE, is the
default.

A SecureFiles LOB can only be created in a tablespace

managed with Automatic Segment Space Management
(ASSM).

ORACLE .

Chapter 3
CREATE TABLE with LOB Storage

Table 3-1 (Cont.) Parameters of CREATE TABLE Statement Related to LOBs

___|
Parameter Description

CHUNK For BasicFiles LOBs, specifies the chunk size when creating
a table that stores LOBs.

CHUNK is one or more Oracle blocks and corresponds to the
data size used by Oracle Database when accessing or
modifying the LOB.

For SecureFiles LOBs, it is an advisory size provided for
backward compatibility.

RETENTI ON Configures the LOB column to store old versions of LOB data
in a specified manner.

In Oracle Database Release 12c, this parameter specifies the
retention policy.

RETENTI ON has these possible values:

* MAX specifies that the system keep old versions of LOB
data blocks until the space used by the segment has
reached the size specified in the MAXSI| ZE parameter. If
MAXSI ZE is not specified, MAX behaves like AUTO.

* M Nspecifies that the system keep old versions of LOB
data blocks for the specified number of seconds.

* NONE specifies that there is no retention period and
space can be reused in any way deemed necessary.

* AUTOspecifies that the system manage the space as
efficiently as possible weighing both time and space
needs.

¢ See Also:

RETENTION Parameter for
BasicFiles LOBs for more
information about RETENTI ON
parameter used with BasicFiles
LOBs.

MAXSI ZE Specifies the upper limit of storage space that a LOB may
use.

If this amount of space is consumed, new LOB data blocks
are taken from the pool of old versions of LOB data blocks as
needed, regardless of time requirements.

FREEPOOLS Specifies the number of FREELI ST groups for BasicFiles
LOBs, if the database is in automatic undo mode. Under
Release 12c compatibility, this parameter is ignored when
SecureFiles LOBs are created.

ORACLE 3-8

ORACLE

Chapter 3
CREATE TABLE with LOB Storage

Table 3-1 (Cont.) Parameters of CREATE TABLE Statement Related to LOBs

Parameter

Description

LOGGE NG NOLOGGE NG, or
FI LESYSTEM LI KE_LOGE NG

Specifies logging options:
* LOGE NG specifies logging the creation of the LOB and

subsequent inserts into the LOB, in the redo log file.
LOGGE NGis the default.

* NOLOGAE NG specifies no logging.

e FILESYSTEM LI KE_LOGA NG specifies that the system
only logs the metadata. This is similar to metadata
journaling of file systems, which reduces mean time to
recovery from failures. FI LESYSTEM LI KE_LOGGE NG
ensures that data is completely recoverable (an instance
recovery) after a server failure.

This option is invalid for BasicFiles LOBs.

For SecureFiles LOBs, the following applies:

* The NOLOGGE NGsetting is converted internally to
FI LESYSTEM LI KE_LOGA NG

* The LOGE NGsetting is similar to the data journaling of
file systems.
* Both the LOGE NGand FI LESYSTEM LI KE_LOGE NG
settings provide a complete transactional file system.
For a non-partitioned object, the value specified for this
clause is the actual physical attribute of the segment
associated with the object.
For partitioned objects, the value specified for this clause is
the default physical attribute of the segments associated with
all partitions specified in the CREATE statement (and in
subsequent ALTER ... ADD PARTI Tl ON statements), unless
you specify the logging attribute in the PARTI TI ON
description.

CAUTION:

For LOB segments with NOLOGE NG or

FI LESYSTEM LI KE_LOGAE NGsettings, it is possible that data
can change on the disk during a backup operation. This
results in read inconsistency. To avoid this situation, ensure
that changes to LOB segments are saved in the redo log file
by setting LOGE NGfor LOB storage.

NOLOGG NGand FI LESYSTEM LI KE_LOGGE NG SecureFiles
are recoverable after an instance failure, but not after a
media failure. LOGE NG SecureFiles are recoverable after
both instance and media failures.

See Also:

e Oracle Database Backup
and Recovery User’s Guide
for a discussion of data
protection, media failure,
and instance failure.

3-9

Chapter 3
CREATE TABLE with LOB Storage

Table 3-1 (Cont.) Parameters of CREATE TABLE Statement Related to LOBs

Parameter Description
* LOGGING / NOLOGGING
P Parameter for BasicFiles
» LOBs
e Ensuring Read
Consistency
FREELI STS or FREELI ST Specifies the number of process freelists or freelist groups,
GROUPS respectively, allocated to the segment; NULL for partitioned

tables. Under Release 12c compatibility, these parameters
are ignored when SecureFiles LOBs are created.

PCTVERSI ON Specifies the percentage of used BasicFiles LOB data space
that may be occupied by old versions of the LOB data pages.

Under Release 12¢ compatibility, this parameter is ignored
when SecureFiles LOBs are created.

COVPRESS or NOCOVPRESS The COVPRESS option turns on Advanced LOB Compression,
and NOCOVPRESS turns it off.

Note that setting table or index compression does not affect
Advanced LOB Compression.

DEDUPLI CATE or The DEDUPLI CATE option enables Advanced LOB

KEEP_DUPLI CATES Deduplication; it specifies that SecureFiles LOB data that is
identical in two or more rows in a LOB column, partition or
subpartition must share the same data blocks. The database
combines SecureFiles LOBs with identical content into a
single copy, reducing storage and simplifying storage
management. The opposite of this option is
KEEP_DUPLI CATES.

ENCRYPT or DECRYPT The ENCRYPT option turns on SecureFiles Encryption, and
encrypts all SecureFiles LOB data using Oracle Transparent
Data Encryption (TDE). The DECRYPT options turns off
SecureFiles Encryption.

CREATE TABLE and SecureFiles LOB Features

Note usage notes and examples for SecureFiles LOBs used with theCREATE TABLE.

This section provides usage notes and examples for features specific to SecureFiles
LOBs used with CREATE TABLE.

" Note:

Clauses in example discussions refer to the Backus Naur (BNF) notation
Example 3-1.

ORACLE 3-10

Chapter 3
CREATE TABLE with LOB Storage

¢ See Also:

CREATE TABLE LOB Storage Parameters for more information about
parameters

Topics:

CREATE TABLE with Advanced LOB Compression
CREATE TABLE with Advanced LOB Deduplication
CREATE TABLE with SecureFiles Encryption

CREATE TABLE with Advanced LOB Compression

You can use Advanced LOB Compression with the CREATE TABLE statement under
certain circumstances.

Topics:

Usage Notes for Advanced LOB Compression
Examples of CREATE TABLE and Advanced LOB Compression

Usage Notes for Advanced LOB Compression

Consider these issues when using the CREATE TABLE statement and Advanced LOB
Compression.

ORACLE

Advanced LOB Compression is performed on the server and enables random
reads and writes to LOB data. Compression utilities on the client, like
utl _conpress, cannot provide random access.

Advanced LOB Compression does not enable table or index compression.
Conversely, table and index compression do not enable Advanced LOB
Compression.

The LOW MEDI UM and H GH options provide varying degrees of compression. The
higher the compression, the higher the latency incurred. The H GH setting incurs
more work, but compresses the data better. The default is MEDI UM

The LONcompression option uses an extremely lightweight compression algorithm
that removes the majority of the CPU cost that is typical with file compression.
Compressed SecureFiles LOBs at the LOWlevel provide a very efficient choice for
SecureFiles LOB storage. SecureFiles LOBs compressed at LOWgenerally
consume less CPU time and less storage than BasicFiles LOBs, and typically help
the application run faster because of a reduction in disk I/O.

Compression can be specified at the partition level. The CREATE TABLE
| ob_st orage_cl ause enables specification of compression for partitioned tables
on a per-partition basis.

The DBM5_LOB. SETOPTI ONS procedure can enable and disable compression on
individual SecureFiles LOBs.

3-11

Chapter 3
CREATE TABLE with LOB Storage

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about DBVS_LOB. SETOPTI ONS procedure

Examples of CREATE TABLE and Advanced LOB Compression

These examples demonstrate how to issue CREATE TABLE statements for specific
compression scenarios.

Example 3-2 Creating a SecureFiles LOB Column with LOW Compression

CREATE TABLE t1 (a CLOB)
LOB(a) STORE AS SECUREFI LE(
COVPRESS LOW
CACHE
NOLOGG NG

)

Example 3-3 Creating a SecureFiles LOB Column with MEDIUM (default)
Compression

CREATE TABLE t1 (a CLOB)
LOB(a) STORE AS SECUREFILE (
COMPRESS
CACHE
NOLOGG NG

);
Example 3-4 Creating a SecureFiles LOB Column with HIGH Compression

CREATE TABLE t1 (a CLOB)
LOB(a) STORE AS SECUREFI LE (
COVPRESS H GH
CACHE

);
Example 3-5 Creating a SecureFiles LOB Column with Disabled Compression

CREATE TABLE t1 (a CLOB)
LOB(a) STORE AS SECUREFI LE (
NOCOVPRESS
CACHE

K

Example 3-6 Creating a SecureFiles LOB Column with Compression on One
Partition

CREATE TABLE t1 (REG ON VARCHAR2(20), a BLOB)
LOB(a) STORE AS SECUREFILE (
CACHE
)
PARTI TI ON BY LI ST (REG ON) (
PARTI TION p1 VALUES ('x', 'y')
LOB(a) STORE AS SECUREFI LE (
COVPRESS

)

ORACLE 3-12

Chapter 3
CREATE TABLE with LOB Storage

PARTI TI ON p2 VALUES (DEFAULT)
)

CREATE TABLE with Advanced LOB Deduplication
You can use Advanced LOB Deduplication with the CREATE TABLE statement.
Topics:
» Usage Notes for Advanced LOB Deduplication
» Examples of CREATE TABLE and Advanced LOB Deduplication

Usage Notes for Advanced LOB Deduplication
Consider these issues when using CREATE TABLE and Advanced LOB Deduplication.

» ldentical LOBs are good candidates for deduplication. Copy operations can avoid
data duplication by enabling deduplication.

» Duplicate detection happens within a LOB segment. Duplicate detection does not
span partitions or subpartitions for partitioned and subpartitioned LOB columns.

» Deduplication can be specified at a partition level. The CREATE TABLE
| ob_st orage_cl ause enables specification for partitioned tables on a per-partition
basis.

e The DBM5S_LOB. SETOPTI ONS procedure can enable or disable deduplication on
individual LOBs.

Examples of CREATE TABLE and Advanced LOB Deduplication

These examples demonstrate how to issue CREATE TABLE statements for specific
deduplication scenarios.

Example 3-7 Creating a SecureFiles LOB Column with Deduplication

CREATE TABLE t1 (a CLOB)
LOB(a) STORE AS SECUREFILE (
DEDUPL| CATE
CACHE

);
Example 3-8 Creating a SecureFiles LOB Column with Disabled Deduplication

CREATE TABLE t1 (a CLOB)
LOB(a) STORE AS SECUREFI LE (
KEEP_DUPLI CATES
CACHE

)s

Example 3-9 Creating a SecureFiles LOB Column with Deduplication on One
Partition

CREATE TABLE t1 (REG ON VARCHAR2(20), a BLOB)
LOB(a) STORE AS SECUREFI LE (
CACHE

)
PARTI TION BY LIST (REGON) (

PARTI TION p1 VALUES ('x', 'y')
LOB(a) STORE AS SECUREFI LE (

ORACLE 3-13

)s

Chapter 3
CREATE TABLE with LOB Storage

DEDUPLI CATE

)
PARTI TI ON p2 VALUES (DEFAULT)

Example 3-10 Creating a SecureFiles LOB column with Deduplication Disabled
onh One Partition

CREATE TABLE t1 (REG ON VARCHAR2(20), |D NUMBER a BLOB)

)

LOB(a) STORE AS SECUREFI LE (
DEDUPLI CATE
CACHE

PARTI TI ON BY RANGE (REGI ON)

SUBPARTI TI ON BY HASH(I D) SUBPARTITIONS 2 (

PARTI TI ON p1 VALUES LESS THAN (51)
| ob(a) STORE AS a_t2 pl
(SUBPARTITION t2_p1 sl lob(a) STORE AS a_t2_pl sl,
SUBPARTI TION t2_pl_s2 |ob(a) STORE AS a_t2_pl_s2),

PARTI TI ON p2 VALUES LESS THAN (MAXVALUE)
| ob(a) STORE AS a_t2_p2 (KEEP_DUPLI CATES)
(SUBPARTI TI ON t2_p2_s1 | ob(a) STORE AS a_t2_p2_sl,
SUBPARTI TION t2_p2_s2 | ob(a) STORE AS a_t2_p2_s2)

)

CREATE TABLE with SecureFiles Encryption

You can use SecureFiles Encryption with the CREATE TABLE statement.

Topics:

Usage Notes for SecureFiles Encryption
Examples of CREATE TABLE and SecureFiles Encryption

Usage Notes for SecureFiles Encryption

ORACLE

Consider these issues when using CREATE TABLE and SecureFiles Encryptions

Transparent Data Encryption (TDE) supports encryption of LOB data types.
Encryption is performed at the block level.

The encrypt _al gori t hmindicates the name of the encryption algorithm. Valid
algorithms are: AES192 (default), 3DES168, AES128, and AES256.

The column encryption key is derived from PASSWORD, if specified.
The default for LOB encryption is SALT. NOSALT is not supported.
All LOBs in the LOB column are encrypted.

DECRYPT keeps the LOBs in clear text.

LOBs can be encrypted only on a per-column basis, similar to TDE. All partitions
within a LOB column are encrypted.

Key management controls the ability to encrypt or decrypt.

TDE is not supported by the traditional i nport and export utilities or by
transportable-tablespace-based export . Use the Data Pump expdb and i npdb
utilities with encrypted columns instead.

3-14

Chapter 3
CREATE TABLE with LOB Storage

¢ See Also:

"Oracle Database Advanced Security Guide for information about using
the ADM NI STER KEY MANAGEMENT statement to create TDE keystores

Examples of CREATE TABLE and SecureFiles Encryption

These examples demonstrate how to issue CREATE TABLE statements for specific
encryption scenarios.

Example 3-11 Creating a SecureFiles LOB Column with a Specific Encryption
Algorithm

CREATE TABLE t1 (a CLOB ENCRYPT USING ' AES128')
LOB(a) STORE AS SECUREFI LE (
CACHE

K

Example 3-12 Creating a SecureFiles LOB column with encryption for all
partitions

CREATE TABLE t1 (REG ON VARCHAR2(20), a BLOB)
LOB(a) STORE AS SECUREFI LE (
ENCRYPT USI NG ' AES128'
NOCACHE
FI LESYSTEM LI KE_LOGG NG
)
PARTI TI ON BY LI ST (REG ON) (
PARTI TION pl VALUES ('x', 'y'),
PARTI TI ON p2 VALUES (DEFAULT)
)

Example 3-13 Creating a SecureFiles LOB Column with Encryption Based on a
Password Key

CREATE TABLE t1 (a CLOB ENCRYPT | DENTI FI ED BY fo00)
LOB(a) STORE AS SECUREFI LE (
CACHE

)s

The following example has the same result because the encryption option can be set
in the LOB_dedupl i cat e_cl ause section of the statement:

CREATE TABLE t1 (a CLOB)
LOB(a) STORE AS SECUREFI LE (
CACHE
ENCRYPT
| DENTI FI ED BY f 00

)
Example 3-14 Creating a SecureFiles LOB Column with Disabled Encryption

CREATE TABLE t1 (a CLOB)
LOB(a) STORE AS SECUREFI LE (
CACHE DECRYPT

K

ORACLE 3-15

Chapter 3
ALTER TABLE with LOB Storage

ALTER TABLE with LOB Storage

You can modify LOB storage with an ALTER TABLE statement and specific LOB-related
parameters.

Topics:

* About ALTER TABLE and LOB Storage

* BNF for the ALTER TABLE Statement

e ALTER TABLE LOB Storage Parameters
 ALTER TABLE SecureFiles LOB Features

About ALTER TABLE and LOB Storage

You can use ALTER TABLE to enable compression, deduplication, or encryption features
for a LOB column.

The ALTER TABLE statement supports online operations and Oracle Database supports
parallel operations on SecureFiles LOBs columns, making this a resource-efficient
approach.

As an alternative to ALTER TABLE, you can use online redefinition to enable one or
more of these features. As with ALTER TABLE, online redefinition of SecureFiles LOB
columns can be executed in parallel.

¢ See Also:

e Oracle Database SQL Language Reference for more information about
ALTER TABLE statement

e Migrating Columns from BasicFiles LOBs to SecureFiles LOBs for more
information about online redefinition

e Oracle Database PL/SQL Packages and Types Reference for more
information about DBVMS_REDEFI NI TI ON package

BNF for the ALTER TABLE Statement

This Backus Naur (BNF) notation provides the syntax for ALTER TABLE with LOB-
specific parameters in bold.

¢ See Also:

» CREATE TABLE LOB Storage Parameters for parameter descriptions

ORACLE 3-16

Chapter 3
ALTER TABLE with LOB Storage

* Oracle Database SQL Language Reference for more information about ALTER
TABLE statement

ALTER TABLE [schena.]table
alter_table properties

col um_cl auses
constraint_clauses

alter _table partitioning
alter_external table clauses
move_tabl e _cl ause

enabl e_di sabl e_cl ause

{ ENABLE | DI SABLE }

TABLE LOCK | ALL TRI GGERS }
enabl e_di sabl e_cl ause

{ ENABLE | DI SABLE }

TABLE LOCK | ALL TRI GGERS }

col um_cl auses> ::=
{ add_col um_cl ause
modi fy_col um_cl ause
drop_col utm_cl ause

add_col um_cl ause
modi fy_col um_cl ause
drop_col utm_cl ause

renanme_col um_cl ause

modi fy collection_retrieva

modi fy collection_retrieval ...
modi fy LOB storage_cl ause

modi fy LOB storage clause | ...
alter _varray col properties
alter _varray col properties]

—_— e e e — — A\ e A — e s — e — — — — — —

<nodi fy LOB storage clause> ::=

MODI FY LOB (LOB iten) (nodify LOB paraneters)
<nodi fy LOB paraneters> ::=

{ storage clause

| PCTVERSI ON i nt eger

| FREEPQCLS i nteger

| REBU LD FREEPCOLS

| LOB retention_clause

| LOB deduplicate clause

| LOB_conpression_clause

| { ENCRYPT encryption_spec | DECRYPT }

| { CACHE

| { NOCACHE | CACHE READS } [|ogging clause]
}

| allocate_extent_clause

| shrink_clause

| deal | ocate_unused_cl ause

}

ORACLE 3-17

Chapter 3
ALTER TABLE with LOB Storage

ALTER TABLE LOB Storage Parameters

You must use specific parameters of the ALTER TABLE statement that relate to LOB
storage.

Parameters may be specific to BasicFiles LOB or SecureFiles LOB storage, as
indicated.

Table 3-2 Parameters of ALTER TABLE Statement Related to LOBs

|
Parameter Description
RETENTI ON Configures the LOB column to store old versions of LOB data

in a specified manner. Altering RETENTI ON only affects space
created after the ALTER TABLE statement runs.

COVPRESS or NOCOVPRESS Enables or disables Advanced LOB Compression. All LOBs
in the LOB segment are altered with the new setting.

DEDUPLI CATE or Enables or disables Advanced LOB Deduplication.

KEEP_DUPLI CATES The option DEDUPLI CATE enables you to specify that LOB

data that is identical in two or more rows in a LOB column
share the same data blocks. The database combines LOBs
with identical content into a single copy, reducing storage and
simplifying storage management. The opposite of this option
is KEEP_DUPLI CATES.

ENCRYPT or DECRYPT Enables or disables SecureFiles LOB encryption. Alters all
LOBs in the LOB segment with the new setting. A LOB
segment can be only altered to enable or disable LOB
encryption. That is, ALTER cannot be used to update the
encryption algorithm or the encryption key. Update the
encryption algorithm or encryption key using the ALTER
TABLE REKEY syntax.

ALTER TABLE SecureFiles LOB Features

Certain features specific to SecureFiles LOBs work with the ALTER TABLEstatement.

These SecureFiles LOBs features work with ALTER TABLE as described in the usage
notes and examples.

Note:

Clauses in example discussions refer to the Backus Naur (BNF) notation
"BNF for the ALTER TABLE Statement".

Parameters are described in "ALTER TABLE LOB Storage Parameters".

Topics:
 ALTER TABLE with Advanced LOB Compression
 ALTER TABLE with Advanced LOB Deduplication

ORACLE 3-18

Chapter 3
ALTER TABLE with LOB Storage

 ALTER TABLE with SecureFiles Encryption

ALTER TABLE with Advanced LOB Compression

Advanced LOB Compression works with the ALTER TABLE statement.
Topics:

» Usage Notes for Advanced LOB Compression

* Examples of ALTER TABLE and Advanced LOB Compression

Usage Notes for Advanced LOB Compression

Consider these issues when using ALTER TABLE and Advanced LOB Compression.

e This syntax alters the compression mode of the LOB column.

e The DBM5S_LOB. SETOPTI ONS procedure can enable or disable compression on
individual LOBs.

* Compression may be specified either at the table level or the partition level.

¢ The LON MEDI UM and HI GH options provide varying degrees of compression. The
higher the compression, the higher the latency incurred. The H GH setting incurs
more work, but compresses the data better. The default is MEDI UM

¢ See Also:

CREATE TABLE with Advanced LOB Compression

Examples of ALTER TABLE and Advanced LOB Compression

ORACLE

These examples demonstrate how to issue ALTER TABLE statements for specific
compression scenarios.

Example 3-15 Altering a SecureFiles LOB Column to Enable LOW
Compression

ALTER TABLE t1 MODI FY
LOB(a) (
COVPRESS LOW
)

Example 3-16 Altering a SecureFiles LOB Column to Disable Compression

ALTER TABLE t1 MODI FY
LCB(a) (
NOCOVPRESS
)s

Example 3-17 Altering a SecureFiles LOB Column to Enable HIGH
Compression

ALTER TABLE t1 MODI FY
LCB(a) (
COVPRESS HI GH
)s

3-19

Chapter 3
ALTER TABLE with LOB Storage

Example 3-18 Altering a SecureFiles LOB Column to Enable Compression on
One partition

ALTER TABLE t1 MODI FY PARTI TI ON p1
LOB(a) (
COVPRESS H GH
)

ALTER TABLE with Advanced LOB Deduplication

Advanced LOB Deduplication works with the ALTER TABLE statement.
Topics:

* Usage Notes for Advanced LOB Deduplication

* Examples of ALTER TABLE and Advanced LOB Deduplication

Usage Notes for Advanced LOB Deduplication

Consider these issues when using ALTER TABLE and Advanced LOB Deduplication.

e The ALTER TABLE syntax can enable or disable LOB-level deduplication.
* This syntax alters the deduplication mode of the LOB column.

e The DBM5S_LOB. SETOPTI ONS procedure can enable or disable deduplication on
individual LOBs.

e Deduplication can be specified at a table level or partition level. Deduplication
does not span across partitioned LOBs.

Examples of ALTER TABLE and Advanced LOB Deduplication

These examples demonstrate how to issue ALTER TABLE statements for specific
deduplication scenarios.

Example 3-19 Altering a SecureFiles LOB Column to Disable Deduplication

ALTER TABLE t1 MDI FY
LOB(a) (
KEEP_DUPLI CATES
)s

Example 3-20 Altering a SecureFiles LOB Column to Enable Deduplication

ALTER TABLE t1 MODI FY
LCB(a) (
DEDUPLI CATE
)

Example 3-21 Altering a SecureFiles LOB Column to Enable Deduplication on
One Partition

ALTER TABLE t1 MODI FY PARTI TI ON pl
LCB(a) (
DEDUPLI CATE
)s

ORACLE 3-20

Chapter 3
ALTER TABLE with LOB Storage

ALTER TABLE with SecureFiles Encryption

SecureFiles Encryption works with the ALTER TABLE statement.
Topics:
* Usage Notes for SecureFiles Encryption

* Examples of ALTER TABLE and SecureFiles Encryption

Usage Notes for SecureFiles Encryption

Consider these issues when using ALTER TABLE and SecureFiles Encryption.

* ALTERTABLE enables and disables SecureFiles Encryption. This syntax also allows
the user to re-key LOB columns with a new key or algorithm.

e ENCRYPT and DECRYPT options enable or disable encryption on all LOBs in the
specified SecureFiles LOB column.

e The default for LOB encryption is SALT. NOSALT is not supported.
* The DECRYPT option converts encrypted columns to clear text form.
« Key management controls the ability to encrypt or decrypt.

e LOBs can be encrypted only on a per-column basis. A partitioned LOB has either
all partitions encrypted or not encrypted.

Examples of ALTER TABLE and SecureFiles Encryption

ORACLE

These examples demonstrate how to issue ALTER TABLE statements for specific
encryption scenarios.

Example 3-22 Altering a SecureFiles LOB Column by Encrypting Based on a
Specific Algorithm

Enable LOB encryption using 3DES168.

ALTER TABLE t1 MODI FY
(a CLOB ENCRYPT USI NG ' 3DES168') ;

This is another example of enabling LOB encryption using 3DES168.

ALTER TABLE t1 MODIFY LOB(a)
(ENCRYPT USI NG ' 3DES168');

Example 3-23 Altering a SecureFiles LOB Column by Encrypting Based on a
Password Key

Enable encryption on a SecureFiles LOB column and build the encryption key using a
password.

ALTER TABLE t1 MOXDIFY
(a CLOB ENCRYPT | DENTI FI ED BY fo00);

Example 3-24 Altering a SecureFiles LOB Column by Re-keying the Encryption
To re-encrypt the LOB column with a new key, re-key the table.

ALTER TABLE t1 REKEY USI NG ' 3DES168' ;

3-21

Chapter 3
Initialization, Compatibility, and Upgrading

Initialization, Compatibility, and Upgrading

You must perform LOB initialization using appropriate compatibility parameters.
Topics:
e Compatibility and Upgrading

* Initialization Parameter for SecureFiles LOBs

Compatibility and Upgrading

All features described in this document are enabled with compatibility set to
11. 2. 0. 0. 0 or higher. There is no downgrade capability after 11. 2. 0. 0. 0 is set.

If you want to upgrade BasicFiles LOBs to SecureFiles LOBs, you must use typical
methods for upgrading data (CTAS/ITAS, online redefinition, export/import, column to
column copy, or using a view and a new column). Most of these solutions require twice
the disk space used by the data in the input LOB column. However, partitioning and
taking these actions on a partition-by-partition basis lowers the disk space
requirements.

Initialization Parameter for SecureFiles LOBS

ORACLE

You, as database administrator, using the DB_SECUREFI LE initialization parameter, can
modify the initial settings that the COMPATI Bl LI TY parameter sets as default.

By changing the intial settings, you change the circumstances under which
SecureFiles LOBs or BasicFiles LOBs are created or allowed. The DB_SECUREFI LE
parameter is typically set in the fileinit. ora.

¢ See Also:

e Oracle Database Reference

e Compatibility and Upgrading

The DB_SECUREFI LE initialization parameter is dynamic and can be modified with the
ALTER SYSTEMstatement. Example 3-25 shows the format for changing the parameter
value:

The valid values for DB_SECUREFI LE are:

* NEVER prevents SecureFiles LOBs from being created. If NEVER is specified, any
LOBs that are specified as SecureFiles LOBs are created as BasicFiles LOBs. If
storage options are not specified, the BasicFiles LOB defaults are used. All
SecureFiles LOB-specific storage options and features such as compress,
encrypt, or deduplicate throw an exception.

* | GNORE disallows SecureFiles LOBs and ignores any errors that forcing BasicFiles
LOBs with SecureFiles LOBs options might cause. If | GNORE is specified, the
SECUREFI LE keyword and all SecureFiles LOB options are ignored.

3-22

Chapter 3
Migrating Columns from BasicFiles LOBs to SecureFiles LOBs

» PERM TTED allows SecureFiles LOBs to be created, if specified by users.
Otherwise, BasicFiles LOBs are created.

e PERFERRED attempts to create a SecureFiles LOB unless BasicFiles LOB is
explicitly specified for the LOB or the parent LOB (if the LOB is in a partition or
sub-partition). PREFERRED is the default value starting with Oracle Database 12c.

e ALWAYS attempts to create SecureFiles LOBs but creates any LOBs not in ASSM
tablespaces as BasicFiles LOBs, unless the SECUREFI LE parameter is explicitly
specified. Any BasicFiles LOB storage options specified are ignored, and the
SecureFiles LOB defaults are used for all storage options not specified.

* FORCE attempts to create all LOBs as SecureFiles LOBs even if users specify
BASI CFI LE. This option is not recommended. Instead, PREFERRED or ALWAYS should
be used.

Example 3-25 Setting DB_SECUREFILE parameter through ALTER SYSTEM

ALTER SYSTEM SET DB_SECUREFI LE = ' ALWAYS';

Migrating Columns from BasicFiles LOBs to SecureFiles
LOBs

You can use several methods of migrating LOBs columns.

Topics:

* Preventing Generation of REDO Data When Migrating to SecureFiles LOBs
* Online Redefinition for BasicFiles LOBs

* Online Redefinition Example for Migrating Tables with BasicFiles LOBs

» Redefining a SecureFiles LOB in Parallel

Preventing Generation of REDO Data When Migrating to SecureFiles
LOBs

Migrating BasicFiles LOB columns generates redo data, which can cause performance
problems.

Redo changes for the table are logged during the migration process if the CREATE
TABLE statement had the LOGA NG clause set.

Redo changes for a column being converted from BasicFiles LOB to SecureFiles LOB
are logged if LOGA NGis the storage setting for the SecureFiles LOB column. The
logging setting (LOGA NG or NOLOGA NG) for the LOB column is inherited from the
tablespace in which the LOB is created.

You can prevent redo space generation during migration to SecureFiles LOB.

» Specify the NOLOGA NG storage parameter for any new SecureFiles LOB columns.

You may turn LOGGE NG on when the migration is complete.

ORACLE 3-23

Chapter 3
Migrating Columns from BasicFiles LOBs to SecureFiles LOBs

Online Redefinition for BasicFiles LOBs

Online redefinition is the recommended method for migration of BasicFiles LOBs to
SecureFiles LOBs.

You can perform online redefinition at the table or partition level.

Online Redefinition Advantage

* No requirement to take the table or partition offline
« Can be done in parallel

Online Redefinition Disadvantages

e Additional storage equal to the entire table or partition required and all LOB
segments must be available

e Global indexes must be rebuilt

Online Redefinition Example for Migrating Tables with BasicFiles

LOBs

ORACLE

You can migrate a table using Online Redefinition.

Online Redefinition has the advantage of not requiring the table to be off line, but it
requires additional free space equal to or even slightly greater than the space used by
the table. Example 3-26 demonstrates how to migrate a table using Online
Redefinition.

Example 3-26 Example of Online Redefinition

REM Grant privileges required for online redefinition.
GRANT EXECUTE ON DBMS_REDEFI NI TION TO pm
GRANT ALTER ANY TABLE TO pm
GRANT DROP ANY TABLE TO pm
GRANT LOCK ANY TABLE TO pm
GRANT CREATE ANY TABLE TO pm
GRANT SELECT ANY TABLE TO pm
REM Privileges required to performcloning of dependent objects.
GRANT CREATE ANY TRI GGER TO pm
GRANT CREATE ANY | NDEX TO pm
CONNECT pm
/1 ALTER SESSI ON FORCE parallel dn;
DROP TABLE cust;
CREATE TABLE cust (c_i d NUMBER PRI MARY KEY,
c_zip NUMBER
c_name VARCHAR(30) DEFAULT NULL,
c_lob CLOB
):
I NSERT I NTO cust VALUES(1, 94065, 'hhh', 'ttt');
- Creating InterimTable
- There is no requirement to specify constraints because they are
- copied over fromthe original table.
CREATE TABLE cust _int(c_id NUMBER NOT NULL,
c_zip NUMBER
c_name VARCHAR(30) DEFAULT NULL,
c_lob CLOB

3-24

Chapter 3
PL/SQL Packages for LOBs and DBFS

) LOB(c_| ob) STORE AS SECUREFI LE (NOCACHE FI LESYSTEM LI KE_LOGG NG ;
DECLARE
col _mappi ng VARCHAR2('1000) ;
BEG N
- map all the colums in the interimtable to the original table
col _mapping : =
‘c_idc_id, ']
‘c_zipc_zip, ']
‘c_name c_nane, '||
‘c_lob c_lob';
DBMS_REDEFI NI TI ON. START_REDEF_TABLE(' pmi, 'cust', 'cust_int', col _mapping);
END;
/
DECLARE
error_count pls_integer := 0;
BEG N
DBMS_REDEFI NI TI ON. COPY_TABLE_DEPENDENTS(' pmi, 'cust', 'cust_int',
1, TRUE, TRUE, TRUE, FALSE, error_count);
DBMS_QUTPUT. PUT_LINE(" errors :="' || TO_CHAR(error_count));
END;
/
EXEC DBMS_REDEFI NI TI ON. FI NI SH_REDEF_TABLE(' pmi, 'cust', 'cust_int');
- Drop the interimtable
DROP TABLE cust _int;
DESC cust;
- The following insert statement fails. This illustrates
- that the primary key constraint on the c_id colum is
- preserved after nigration.
I NSERT | NTO cust VALUES(1, 94065, 'hhh', "ttt');
SELECT * FROM cust;

Redefining a SecureFiles LOB in Parallel

You can redefine a SecureFiles LOB column in parallel, if the system has sufficient
resources for parallel execution.

To set up parallel execution of online redefinition, run ALTER SESSI ON.

* Add the following statement after the connect statementExample 3-26 in the last
section:

ALTER SESSI ON FORCE PARALLEL DM,

PL/SQL Packages for LOBs and DBFS

ORACLE

There are PL/SQL packages that can be used with BasicFiles LOBs and SecureFiles
LOBs.

Changes made to accommodate SecureFiles LOBs and DBFS are emphasized.
Topics:

¢ The DBMS_LOB Package Used with SecureFiles LOBs and DBFS

« DBMS_LOB Constants Used with SecureFiles LOBs and DBFS

« DBMS_LOB Subprograms Used with SecureFiles LOBs and DBFS
« DBMS_SPACE Package

3-25

Chapter 3
PL/SQL Packages for LOBs and DBFS

The DBMS_LOB Package Used with SecureFiles LOBs and DBFS

The DBM5_LOB package provides subprograms to operate on, or access and
manipulate specific parts of a LOB or complete LOBs.

The DBM5_LOB package applies to both SecureFiles LOB and BasicFiles LOB.

DBMS_LOB Constants Used with SecureFiles LOBs and DBFS and DBMS_LOB
Subprograms Used with SecureFiles LOBs and DBFS describe modifications made to
the DBM5S_LOB constants and subprograms with the addition of SecureFiles LOB and
Database File System (DBFS).

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference for more
information about DBVS_LOB package

e Introducing the Database File System

DBMS_LOB Constants Used with SecureFiles LOBs and DBFS

ORACLE

Certain constants support DBFS link interfaces.

Table 3-3 lists constants that support DBFS Link interfaces.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for complete
information about constants used in the PL/SQL DBMS_LOB package

Table 3-3 DBMS_LOB Constants That Support DBFS Link Interfaces

|
Constant Description

DBFS_ LI NK_NEVER DBFS link state value

DBFS link state value

DBFS_LI NK_YES

DBFS_LI NK_NO DBFS link state value

DBFS LI NK_CACHE Flag used by COPY_DBFS_LI NK() and MOVE_DBFS_LI NK() .
DBFS_LI NK_NOCACHE Flag used by COPY_DBFS_LI NK() and MOVE_DBFS_LI NK() .

DBFS LI NK_PATH MAX_SI ZE The maximum length of DBFS pathnames; 1024.

3-26

Chapter 3
PL/SQL Packages for LOBs and DBFS

Table 3-3 (Cont.) DBMS_LOB Constants That Support DBFS Link Interfaces

__|
Constant Description

CONTENTTYPE_MAX_SI ZE The maximum 1-byte ASCII characters for content type; 128.

DBMS_LOB Subprograms Used with SecureFiles LOBs and DBFS

ORACLE

You should note that some changes have been made to the DBMS_LOB subprograms
over time.

Table 3-4 summarizes changes made to PL/SQL package DBVS_LOB subprograms.

Be aware that some of the DBM5_LOB operations that existed before Oracle Database
11g Release 2 throw an exception error if the LOB is a DBFS link. To remedy this
problem, modify your applications to explicitly replace the DBFS link with a LOB by
calling the DBM5_LOB. COPY_FROM LI NK procedure before they make these calls. When
the call completes, then the application can move the updated LOB back to DBFS
using the DBM5_LOB. MOVE_TO DBFS_LI NK procedure, if necessary.

Other DBM5S_LOB operations that existed before Oracle Database 11g Release 2 work
transparently if the DBFS Link is in a file system that supports streaming. Note that
these operations fail if streaming is either not supported or disabled.

Table 3-4 DBMS_LOB Subprograms
|

Subprogram Description
APPEND Appends the contents of the source LOB to the destination LOB
See Also:
Oracle Database PL/SQL
Packages and Types Reference
COVPARE Compares two LOBs in full or in parts

¢ See Also:

Oracle Database PL/SQL
Packages and Types Reference

3-27

Chapter 3
PL/SQL Packages for LOBs and DBFS

Table 3-4 (Cont.) DBMS_LOB Subprograms
|

Subprogram

Description

CONVERTTOBLOB

CONVERTTOCLOB

CoPY

COPY_DBFS_LI NK

COPY_FROM DBFS_LI NK

ORACLE

Converts the character data of a CLOB or NCLOB into the
specified character set and writes it in binary format to a
destination BLOB

See Also:

Oracle Database PL/SQL
Packages and Types Reference

Converts the binary data of a BLOB into the specified character
set and writes it in character format to a destination CLOB or
NCLOB

¢ See Also:

Oracle Database PL/SQL
Packages and Types Reference

Copies all or part of the source LOB to the destination LOB

¢ See Also:

Oracle Database PL/SQL
Packages and Types Reference

Copies an existing DBFS link into a new LOB

See Also:

Oracle Database PL/SQL
Packages and Types Reference

Copies the specified LOB data from DBFS HSM Store into the
database

¢ See Also:

Oracle Database PL/SQL
Packages and Types Reference

3-28

Chapter 3
PL/SQL Packages for LOBs and DBFS

Table 3-4 (Cont.) DBMS_LOB Subprograms
___|
Subprogram Description

DBFS LI NK_GENERATE_PAT Returns a unique file path name for creating a DBFS Link
HNAVE

¢ See Also:

Oracle Database PL/SQL
Packages and Types Reference

ERASE Erases all or part of a LOB

See Also:

Oracle Database PL/SQL
Packages and Types Reference

FRAGVENT _DELETE Deletes a specified fragment of the LOB

See Also:

Oracle Database PL/SQL
Packages and Types Reference

FRAGVENT_| NSERT Inserts a fragment of data into the LOB

" See Also:

Oracle Database PL/SQL
Packages and Types Reference

FRAGVENT_MOVE Moves a fragment of a LOB from one location in the LOB to
another location

See Also:

Oracle Database PL/SQL
Packages and Types Reference

ORACLE 3-29

Chapter 3
PL/SQL Packages for LOBs and DBFS

Table 3-4 (Cont.) DBMS_LOB Subprograms
|

Subprogram

Description

FRAGVENT_REPLACE

GET_DBFS_LI NK

GET_DBFS_LI NK_STATE

CETCONTENTTYPE

CETOPTI ONS

ORACLE

Replaces a fragment of a LOB with new data

¢ See Also:

Oracle Database PL/SQL
Packages and Types Reference

Returns the DBFS path name for a LOB

See Also:

Oracle Database PL/SQL
Packages and Types Reference

Returns the linking state of a LOB

¢ See Also:

Oracle Database PL/SQL
Packages and Types Reference

Retrieves the content type string of the LOB data

¢ See Also:

Oracle Database PL/SQL
Packages and Types Reference

Retrieves the previously set options of a specific LOB

See Also:

* Oracle Database PL/SQL Packages and Types Oracle
Database PL/SQL Packages and Types Reference

e Oracle Call Interface Programmer's Guidefor more
information on the corresponding
OCl LobGet Cont ent Type() an OCI LOB function

3-30

Chapter 3
PL/SQL Packages for LOBs and DBFS

Table 3-4 (Cont.) DBMS_LOB Subprograms
|

Subprogram

Description

| SSECUREFI LE

LOADBLOBFROMWFI LE

LOADCLOBFROVFI LE

LOADFROVFI LE

MOVE_TO_DBFS_LI NK

ORACLE

Determines if a LOB is a SecureFiles LOB

¢ See Also:

Oracle Database PL/SQL
Packages and Types Reference

Loads BFI LE data into a BLOB

¢ See Also:

Oracle Database PL/SQL
Packages and Types Reference

Loads BFI LE data into a CLOB

If the CLOB is linked, an exception is thrown.

See Also:

Oracle Database PL/SQL
Packages and Types Reference

Loads BFI LE data into a LOB

See Also:

Oracle Database PL/SQL
Packages and Types Reference

Moves the specified LOB data from the database into DBFS
HSM Store

¢ See Also:

Oracle Database PL/SQL
Packages and Types Reference

3-31

Chapter 3
PL/SQL Packages for LOBs and DBFS

Table 3-4 (Cont.) DBMS_LOB Subprograms

___|
Subprogram Description

READ Reads data from a LOB

¢ See Also:

Oracle Database PL/SQL
Packages and Types Reference

SET_DBFS_LI NK Links a LOB with a DBFS path name

See Also:

Oracle Database PL/SQL
Packages and Types Reference

SETCONTENTTYPE Sets the content type string of the LOB data

See Also:

Oracle Database PL/SQL
Packages and Types Reference

SETOPTI ONS Sets new options for a specific LOB

" See Also:

e Oracle Database PL/SQL
Packages and Types
Reference

e Oracle Call Interface
Programmer's Guidefor more
information on the
corresponding
OCl LobSet Cont ent Type()

(OCI LOB function)

ORACLE 3-32

Chapter 3
PL/SQL Packages for LOBs and DBFS

Table 3-4 (Cont.) DBMS_LOB Subprograms

___|
Subprogram Description

SUBSTR Returns a fragment of a LOB

¢ See Also:

Oracle Database PL/SQL
Packages and Types Reference

TRIM Trims the LOB to a specified length

See Also:

Oracle Database PL/SQL
Packages and Types Reference

VWRI TE Writes data to a LOB

¢ See Also:

Oracle Database PL/SQL
Packages and Types Reference

VRl TEAPPEND Appends data to the end of a LOB

¢ See Also:

Oracle Database PL/SQL
Packages and Types Reference

DBMS_SPACE Package

You can analyze segment growth and space requirements using the DBVS_SPACE
PL/SQL package.

The DBMS_SPACE PL/SQL package enables you to analyze segment growth and space
requirements.

DBMS_SPACE.SPACE_USAGE()

The existing DBM5_SPACE. SPACE_USAGE procedure is overloaded to return information
about LOB space usage.

ORACLE 3-33

Chapter 3
PL/SQL Packages for LOBs and DBFS

It returns the amount of disk space in blocks used by all the SecureFiles LOBs in the
LOB segment.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference

ORACLE 3-34

Operations Specific to Persistent and
Temporary LOBs

LOB operations between persistent and temporary LOB instances can differ.
Topics:

* Persistent LOB Operations

e Temporary LOB Operations

e Creating Persistent and Temporary LOBs in PL/SQL

* Freeing Temporary LOBs in OCI

See Also:

e Using LOB APIs gives details and examples of APl usage for LOB APIs
that can be used with either temporary or persistent LOBs.

« LOB APIs for BFILE Operations gives details and examples for usage of
LOB APIs that operate on BFILEs.

Persistent LOB Operations

This section describes operations that apply only to persistent LOBs.

Inserting a LOB into a Table

You can insert LOB instances into persistent LOB columns using by multiple methods.

¢ See Also:

DDL and DML Statements with LOBs for more information about the different
methods available to insert LOB instances into persistent LOB columns

Selecting a LOB from a Table

You can select a persistent LOB from a table just as you would any other data type. In
the following example, persistent LOB instances of different types are selected into
PL/SQL variables.

decl are

ORACLE 4-1

Chapter 4
Temporary LOB Operations

bl obl BLOB;

bl ob2 BLOB;

cl obl CLOB;

ncl obl NCLOB;

BEG N
SELECT ad_photo I NTO bl obl FROM print_nmedi a WHERE Product _i d
FOR UPDATE;
SELECT ad_phot o I NTO bl ob2 FROM print _medi a WHERE Product _i d

2268

3106;

SELECT ad_sourcetext |NTO clobl FROM Print_nedi a
VHERE product _i d=3106 and ad_i d=13001 FOR UPDATE;

SELECT ad_fltextn INTO ncl obl FROM Print _nedia
VHERE product _i d=3060 and ad_i d=11001 FOR UPDATE;

END;
/
show errors;

Temporary LOB Operations

This section describes operations that apply only to temporary LOB instances.

Creating and Freeing a Temporary LOB

To create a temporary LOB instance, you must declare a variable of the given LOB
data type and pass the variable to the CREATETEMPORARY API.

The temporary LOB instance exists in your application until it goes out of scope, your
session terminates, or you explicitly free the instance. Freeing a temporary LOB
instance is recommended to free system resources.

The following example demonstrates how to create and free a temporary LOB in the
PL/SQL environment using the DBMS_L OB package.

decl are
bl obl BLOB;
bl ob2 BLOB;
clobl CLOB;
ncl obl NCLOB;
BEG N
- create temp LOBs
DBMS _LOB. CREATETEMPORARY!
DBMS_LOB. CREATETEMPORARY!
DBMS _LOB. CREATETEMPORARY!
DBMS_LOB. CREATETEMPORARY!

—

bl obl, TRUE, DBMS_LOB. SESSI ON);
bl ob2, TRUE, DBMS_LOB. SESSI ON);
cl obl, TRUE, DBMS_LOB. SESSI ON);
ncl obl, TRUE, DBMS_LOB. SESSI ON);

AR

- fill with data
writeDat aToLOB_proc(bl obl);
writeDat aToLOB_proc(bl ob2);

- CHAR->LOB conversion
clobl := "abcde';
ncl obl := TO NCLOB(cl obl);

- Oher APIs
cal I _l ob_api s(bl obl, blob2, clobl, nclobl);

- free tenp LOBs

ORACLE 4-2

Chapter 4
Creating Persistent and Temporary LOBs in PL/SQL

DBVS_LOB. FREETEMPORARY/
DBVS_LOB. FREETEMPORARY/
DBMS_LOB. FREETEMPORARY/
DBMVS_LOB. FREETEMPORARY/

bl obl);
bl 0b2) ;
clobl);
ncl obl);

—_,__aa

END;
/
show errors;

Creating Persistent and Temporary LOBs in PL/SQL

The code example that follows illustrates how to create persistent and temporary
LOBs in PL/SQL. This code is in the demonstration file:

$ORACLE_HOVE r dbns/ deno/ | obs/ pl sql /| obdeno. sql

This demonstration file also calls procedures in separate PL/SQL files that illustrate
usage of other LOB APIs.

¢ See Also:

PL/SQL LOB Demonstration Files for a list of demonstration files and links
for more information about related LOB APIs

decl are
bl obl BLOB;
bl ob2 BLOB;
clobl CLCB;
ncl obl NCLOB;
BEG N
SELECT ad_phot o I NTO bl obl FROM print_medi a WHERE Product _id
FOR UPDATE;
SELECT ad_phot o I NTO bl ob2 FROM print _medi a WHERE Product _id

2268

3106;

SELECT ad_sourcetext INTO clobl FROM Print_nedi a
VHERE product _i d=3106 and ad_i d=13001 FOR UPDATE;

SELECT ad_fltextn INTO ncl obl FROM Print nedia
VHERE product _i d=3060 and ad_i d=11001 FOR UPDATE;

cal I _l ob_api s(bl obl, blob2, clobl, nclobl);
rol | back;

END,

/

show errors;

decl are
bl obl BLOB;

ORACLE 4.3

Chapter 4
Freeing Temporary LOBs in OCI

bl ob2 BLOB;

clobl CLOB;

ncl obl NCLOB;

BEG N
- create temp LOBs

DBVS_LOB. CREATETEMPCORARY!
DBVS_LOB. CREATETEMPCORARY!
DBVS_LOB. CREATETEMPCORARY!
DBVS_LOB. CREATETEMPCORARY!

bl ob1, TRUE, DBMS_LOB. SESSI ON);
bl ob2, TRUE, DBMS_LOB. SESSI ON) ;
cl obl, TRUE, DBMS_LOB. SESSI ON);
ncl obl, TRUE, DBMS_LOB. SESSI ON);

—__A_RA

- fill with data
writeDataToLOB_proc(bl obl);
writeDataToLOB_proc(bl ob2);

- CHAR->LOB conversion
clobl := "abcde';
ncl obl := TO NCLOB(cl obl);

- OQther APl's
cal I _l ob_api s(blobl, blob2, clobl, nclobl);

- free tenp LOBs
DBMS_LOB. FREETEMPORARY
DBMS_LOB. FREETEMPORARY
DBMS_LOB. FREETEMPORARY
DBMS_LOB. FREETEMPORARY

bl ob1);
bl 0b2);
clobl);
ncl obl);

—_~,__a

END;

/

show errors;

Freeing Temporary LOBs in OCI

ORACLE

Any time that your OCI program obtains a LOB locator from SQL or PL/SQL, check

that the locator is temporary. If it is, free the locator when your application is finished

with it. The locator can be from a define during a select or an out bind. A temporary

LOB duration is always upgraded to session when it is shipped to the client side. The
application must do the following before the locator is overwritten by the locator of the
next row:

CCl Lobl sTenporary(env, err, locator, is_tenporary);

i f(is_temporary)
CCl LobFr eeTenpor ary(svc, err, locator);

¢ See Also:

Oracle Call Interface Programmer's Guide chapter 16, section "LOB
Functions."

4-4

Distributed LOBs

Topics:

e Working with Remote LOBs

e SQL Semantics with LOBs in Remote Tables
e Working with Remote LOBs in PL/SQL

« Using Remote Locators with OCl LOB API

Working with Remote LOBS

You can work with LOB data in remote tables is the following ways:

e Directly referencing LOB columns in remote tables (Remote LOB Columns)
accessed using a database link.

e Selecting remote LOB columns into a local LOB locator variable (Remote locator)
Topics
* Working with Remote LOB Columns

* Working with Remote Locator

Working with Remote LOB Columns

Remote LOBs are supported in these ways:

e Create table as select or insert as select
e Functions on remote LOBSs returning scalars

* Data Interface for remote LOBs
Create table as select or insert as select

Only standalone LOB columns are allowed in the select list for statements that are
structured in the following manner:

CREATE TABLE t AS SELECT * FROMtablel@enote site;

I NSERT INTOt SELECT * FROM tablel@enote _site;

UPDATE t SET I obcol = (SELECT |obcol FROMtablel@enote site);

I NSERT | NTO tablel@enote_site SELECT * FROM | ocal _tabl e;

UPDATE tablel@enote site SET |obcol = (SELECT | obcol FROM | ocal table);
DELETE FROM tabl el@enote_site <WHERE cl ause invol ving non_| ob_col urms>

ORACLE 5-1

Chapter 5
Working with Remote LOBSs

Functions on remote LOBs returning scalars

SQL and PL/SQL functions having a LOB parameter and returning a scalar data type
are supported. Other SQL functions and DBM5_LOB APIs are not supported for use with
remote LOB columns. For example, the following statement is supported:

CREATE TABLE tab AS SELECT DBMS_LOB. GETLENGTH@bs2(cl ob_col) |en FROM

tab@lbs2;
CREATE TABLE tab AS SELECT LENGTH(cl ob_col) |en FROM tab@bs2;

However, the following statement is not supported because DBVMS_LOB. SUBSTR returns
aLOB:

CREATE TABLE tab AS SELECT DBMS_LOB. SUBSTR(cl ob_col) fromtab@bs2;

Data Interface for remote LOBS

You can insert a character or binary buffer into a remote CLOB or BLOB, and select a
remote CLOB or BLOB into a character or binary buffer, for example, using PL/SQL:

SELECT cl obcol 1, typel.blobattr INTO varchar_buf1, raw buf2 FROM
tabl el@enote site;

I NSERT I NTO tabl el@enotesite (clobcol 1, typel.blobattr) VALUES
varchar _buf1, raw buf2;

I NSERT I NTO tablel@enotesite (lobcol) VALUES ('test');

UPDATE tabl el SET lobcol ="'xxx';

Working with Remote Locator

ORACLE

You can select a persistent LOB locator from a remote table into a local variable and
this can be done in PL/SQL or in OCI. The remote columns can be of type BLOB,
CLOB or NCLOB. The following SQL statement is the basis for all the examples with
remote LOB locator in this chapter.

CREATE TABLE lob_tab (c1 NUVBER c2 CLOB):

In the following example, the table | ob_t ab (with columns c2 of type CLOB and c1 of
type number) defined in the remote database is accessible using database link db2
and a local CLOB variable | ob_var 1.

SELECT c2 INTO | ob_varl FROM | ob_tab@h2 WHERE c1=1;
SELECT c¢2 INTO | ob_var1l FROM | ob_tab@bh2 WHERE c1=1 for update;

In PL/SQL, the function dbns_| ob. i srenot e can be used to check if a particular LOB
belongs to a remote table. Similarly, in OCl , you can use the OCl _ATTR_LOB_REMOTE

5-2

Chapter 5
Working with Remote LOBs

attribute of OCl LobLocat or to check if a particular LOB belongs to a remote table. For
example,

| F(dbns_l ob.isremte(lob_varl)) THEN
dbms_out put. put _line('LOB locator is renote)
ENDI F;

" See Also:

« |ISREMOTE Function
e OCI_ATTR_LOB_REMOTE Attribute

Topics:
* Using Local and Remote locators as bind with queries and DML on remote tables

* Restrictions when using remote LOB locators

Using Local and Remote locators as bind with queries and DML on remote
tables

For the Queries and DMLs (I NSERT, UPDATE, DELETE) with bind values, the following
four cases are possible. The first case involves local tables and locators and is the
standard LOB functionality. The other three cases are part of the distributed LOBs

functionality and have restrictions listed at the end of this section.

» Local table with local locator as bind value.

* Local table with remote locator as bind value

* Remote table with local locator as bind value

* Remote table with remote locator as bind value

Queries of the following form which use remote lob locator as bind value will be
supported:

SELECT nane FROM | ob_tab@b2 WHERE | ength(cl)=length(:lob vl);

In the above query, c1 is an LOB column and | ob_v1 is a remote locator.

DMLs of the following forms using a remote LOB locator will be supported. Here, the
bind values can be local or remote persistent LOB locators.

UPDATE | ob_tab@lb2 SET cl=:1o0b_v1;

INSERT into |ob_tab@h2 VALUES (:1, :2);

ORACLE 5-3

Chapter 5
SQL Semantics with LOBs in Remote Tables

< Note:

DMLs with r et ur ni ng clause are not supported on remote tables for both
scalar and LOB columns.

Restrictions when using remote LOB locators

General restrictions while using remote LOB locators include the following:

You cannot select a remote temporary LOB locator into a local variable using
SELECT statement. For example,

sel ect substr(c2, 3, 1) fromlob_tab@b2 where cl=1
The above query returns an error.

Remote lob functionality will not be supported for Index Organized tables (I0T). An
attempt to get a locator from remote an 10T table will result in an error.

Both local database and remote database have to be of Database release 12.2 or
higher version.

With distributed LOBs functionality, tables mentioned in the f r omclause or wher e
clause should be collocated on the same database. If remote locators are used as
bind variables in the wher e clauses, they should belong to the same remote
database. You cannot have one locator from DB1 and another locator from DB2 to
be used as bind variables.

Collocated tables or locators use the same database link. It is possible to have 2
different DB Links pointing to the same database. In the example below, both
dbl i nk1 and dbl i nk2 point to the same remote database, but perhaps with
different authentication method. Oracle Database does not support such
operations.

I NSERT into tabl@lblinkl SELECT * fromtab2@iblink2;

Bind values should be the same LOB type as the column LOB type. For example,
NCLOB locators should be bound to NCLOB column and CLOB locators should be
bound to CLOB column. Implicit conversion between NCLOB and CLOB types is not
supported in remote LOBs case.

DMLs (I NSERTs/ UPDATEs) with Array Binds is not supported when bind involves a
remote locator or if table involved is a remote table

You cannot select a BFI LE column from a remote table into a local variable.

SQL Semantics with LOBs in Remote Tables

Topics:

Built-in Functions for Remote LOBs and BFILEs

Passing Remote Locator to Built in SQL Functions

Built-in Functions for Remote LOBs and BFILES

ORACLE

5-4

ORACLE

Chapter 5
SQL Semantics with LOBs in Remote Tables

Any SQL built-in functions and user-defined functions that are supported on local
LOBs and BFILEs are also supported on remote LOBs and BFILEs, as long as the
final value returned by nested functions is not a LOB type. This includes functions for
remote persistent and temporary LOBs and for BFILEs.

Built-in SQL functions which are executed on a remote site can be part of any SQL
statement, like SELECT, | NSERT, UPDATE, and DELETE. For example:

SELECT LENGTH(ad_sourcetext) FROM print_medi a@enote site -- CLOB

SELECT LENGTH(ad_fltextn) FROM print_nedi a@enote site; -- NCLOB
SELECT LENGTH(ad_conposite) FROM print_nedia@enote site; -- BLOB

SELECT product _id fromprint_medi a@enote_site WHERE LENGTH(ad_sour cet ext)
> 3;

UPDATE print_nedi a@enote_site SET product id = 2 WHERE
LENGTH(ad_sour cetext) > 3;

SELECT TO CHAR(foo@bs2(...)) FROM dual @bs2;
-- where foo@bs2 returns a tenporary LOB

The SQL functions fall under the following (not necessarily exclusive) categories:

e SQL functions that are not supported on LOBs:
These functions are relevant only for CLOBs: an example is DECODE.

These functions cannot be supported on remote LOBs because they are not
supported on local LOBs.

* Functions taking exactly one LOB argument (all other arguments are of other data
types) and not returning a LOB:

These functions are relevant only for CLOBs, NCLOBs, and BLOBs: an example is
LENGTH and it is supported. For example:

SELECT LENGTH(ad_conposite) FROM print_nedi a@enote Site;

SELECT LENGTH(ad_header.|ogo) FROM print_medi a@enmte_site; -- LOB in
obj ect

SELECT product _id fromprint_nedi a@enote_site WHERE

LENGTH(ad_sour cetext) > 3;

e Functions that return a LOB:

All these functions are relevant only for CLOBs and NCLOBs. These functions
may return the original LOB or produce a temporary LOB. These functions can be
performed on the remote site, as long as the result returned to the local site is not
aLOB.

Functions returning a temporary LOB are: REPLACE, SUBSTR, CONCAT, ||, TRIM
LTR'M RTRI M LOVER, UPPER, NLS_LOWER, NLS_UPPER, LPAD, and RPAD.

Functions returning the original LOB locator are: NVL, DECODE, and CASE. Note that
even though DECCDE and CASE are not supported currently to operate on LOBs,
they could operate on other data types and return a LOB.

5-5

Chapter 5
Working with Remote LOBs in PL/SQL

For example, the following statements are supported:

SELECT TO_CHAR(CONCAT(ad_sourcet ext, ad_sourcetext)) FROM
print_medi a@enote_site;
SELECT TO CHAR(SUBSTR(ad fltextnfs, 1, 3)) FROM print_nedi a@enote site;

But the following statements are not supported:

SELECT CONCAT(ad_sourcetext, ad_sourcetext) FROM
print_medi a@enote_site;
SELECT SUBSTR(ad_sourcetext, 1, 3) FROM print_nedia@enote_site;

e Functions that take in more than one LOB argument:

These are: | NSTR, LI KE, REPLACE, CONCAT, ||, SUBSTR, TRIM LTRI M RTRI M LPAD, and
RPAD. All these functions are relevant only for CLOBs and NCLOBs.

These functions are supported only if all the LOB arguments are in the same
dbli nk, and the value returned is not a LOB. For example, the following is
supported:

SELECT TO CHAR(CONCAT(ad_sourcet ext, ad_sourcetext)) FROM
print_nmedia@enote site; -- CLOB

SELECT TO CHAR(CONCAT(ad _fltextn, ad fltextn)) FROM
print_media@enote_site; -- NCLOB

But the following is not supported:

SELECT TO_CHAR(CONCAT(a. ad_sourcetext, b.ad_sourcetext)) FROM
print_medi a@bl a, print_medi a@b2 b WHERE a. product _id = b. product _i d;

Passing Remote Locator to Built in SQL Functions

You can pass a remote locator to most built-in SQL functions such as LENGTH, | NSTR,
SUBSTR, and UPPER. For example,

Var | obl CLOB;
BEG N
select c2 into lobl fromlob_tab@b2 where cl=1;
END,
/
select length(:1obl) from dual;

Working with Remote LOBs in PL/SQL

Topics:
e PL/SQL Functions for Remote LOBs and BFILEs
* Using Remote Locators with DBVS_LOB

ORACLE 5-6

Chapter 5
Working with Remote LOBs in PL/SQL

PL/SQL Functions for Remote LOBs and BFILES

Built-in and user-defined PL/SQL functions that are executed on the remote site and
operate on remote LOBs and BFILEs are allowed, as long as the final value returned
by nested functions is not a LOB.

The following example uses the pri nt _nedi a table described in "Table for LOB
Examples: The PM Schema print_media Table"

SELECT product _id FROM print_nedi a@bs2 WHERE foo@bs2(ad_sourcet ext,
‘aa') > 0;
-- foo is a user-define function returning a NUVBER

DELETE FROM print _nedi a@bs2 WHERE DBMS LOB. GETLENGTH@bs2(ad_graphic) = 0;

Restrictions on Remote User-Defined Functions

* The restrictions that apply to SQL functions apply here also.

See Also:

Built-in Functions for Remote LOBs and BFILEs

* A function in one dbl i nk cannot operate on LOB data in another dblink.For
example, the following statement is not supported:

SELECT a. product _id FROM print_nedi a@bsl a, print_nedi a@bs2 b WHERE
CONTAI NS@bs1(b. ad_sourcetext, 'aa') > 0;

* One query block cannot contain tables and functions at different dbl i nks. For
example, the following statement is not supported:

SELECT a. product _id FROM print_nmedi a@bs2 a, print_nedi a@bs3 b
VHERE CONTAI NS@lbs2(a. ad_sourcetext, 'aa’) > 0 AND
foo@bs3(b. ad_sourcetext) > 0;
foo is a user-defined function in dbs3

e There is no support for performing remote LOB operations (that is, DBVS_LOB) from
within PL/SQL, other than issuing SQL statements from PL/SQL.

Remote Functions in PL/SQL, OCI, and JDBC

All the SQL statements listed in Restrictions on Remote User-Defined Functions work
the same if they are executed from inside PL/SQL, OCI, and JDBC. No additional
functionality is provided.

ORACLE .

Chapter 5
Working with Remote LOBs in PL/SQL

Using Remote Locator in PL/SQL

A remote locator can be passed as a parameter to built in PL/SQL functions like
LENGTH, I NSTR, SUBSTR, UPPER and so on which accepts LOB as input. For example,

DECLARE

substr_data varchar2(4000);

remote | oc CLOB;

BEG N

SELECT c2 into remote | oc

FROM | ob_t ab@lb2 WHERE c1=1;

substr_data := substr(remte_loc, position, |ength)
END;

Using Remote Locators with oevs_Lcs

All DBVM5S_LOB APIs other than the APIs targeted for BFILES support operations on
remote LOB locators.

The following example shows how to pass remote locator as input to dbns_| ob
operations.

DECLARE
lob CLOB
buf VARCHAR2(120) :="'TST';
ant NUMBER(2);
[en NUMBER(2);
BEG N
ant :=30;
select c2 into lob fromlob tab@b2 where c1=3 for update;
dbns_|ob.wite(lob, ant, 1, buf);
ant :=30;
dbns_| ob.read(lob, anmt, 1, buf);
len := dbns_| ob. getlength(l ob);
dbns_out put . put _l i ne(buf);
dbns_out put. put _line(ant);
dbns_out put. put _line('get length output ="' || len);
END;
/

Topics:

e Restrictions on Using Remote Locators with DBVMS_LOB
Restrictions on Using Remote Locators with pewvs Lce

All the APIs that accepts two LOB locators must have both LOBs collocated at one
database.

ORACLE 5-8

Chapter 5
Using Remote Locators with OCILOB API

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference to view the
complete list of DBVS_LOB APIs.

Using Remote Locators with s AP

ORACLE

All OCI LOB APIs (except APIs meant for BFILES) support operations on remote LOB
locators.

< Note:

All the APIs that accept two locators must obtain both the LOB locators
through the same database link.

The following list of OCI LOB functions will give an error when a remote LOB locator is
passed to them:

e (OCl LobAssign

e OCl LobLocat or Assi gn

e (OCl LobArrayRead()

e OClLobArrayWite()

e (OCl LobLoadFronFil e2()

The following example shows how to pass a remote locator to CCl LOB API.

voi d sel ect _read_renote_| ob()
{
text *select_sgl = (text *)"SELECT c2 |ob_tab@bsl where c1=1";
ub4 antp = 10;
ub4 nbytes = 0;
ub4 | obl en=0;
OCl LobLocator * one_| ob;
text strbuf[40];

/* initialize single locator */

OCl Descriptor Al l oc(envhp, (dvoid **) &one_ | ob,
(ub4) OCl _DTYPE_LOB,
(size_t) 0, (dvoid **) 0)

OCl Stnt Prepare(stnthp, errhp, select_sql, (ub4)strien((char*)select _sql),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);

OCl Def i neByPos(stnthp, &defp, errhp, (ub4) 1,
(dvoid *) &one_| ob,
(sh4) -1,
(ub2) SQLT_CLOB,
(dvoid *) 0, (ub2 *) 0,

5-9

ORACLE

Chapter 5
Using Remote Locators with OCILOB API

(ub2 *) 0, (ubd) OCI_DEFAULT));

/* fetch the renote locator into the local variable one |ob */
OCl St nt Execut e(svchp, stnthp, errhp, 1, 0, (OC Snapshot *)O0,
(OCl Snapshot *)0, OCl _DEFAULT);

/* Get the length of the renote LOB */
OCl LobGet Lengt h(svchp, errhp,
(OCl LobLocator *) one_l ob, (ub4 *)& obl en)

printf("LOB length = %l\n", |oblen);

menset ((voi d*)strbuf, (int)'\0", (size_t)40);

| * Read the data fromthe renote LOB */

COCl LobRead(svchp, errhp, one_lob, &antp,
(ub4) 1, (dvoid *) strbuf, (ub4)é& nbytes, (dvoid *)O0,
(OCl Cal | backLobRead) 0,

(ub2) 0, (ubl) SQLCS_IMPLICIT));
printf("LOB content = %\n", strbuf);

See Also:

OCI Programmer’s Guide, for the complete list of OCl LOB APIs

5-10

DDL and DML Statements with LOBS

DDL and DML statements work with LOBs.

Topics:

* Creating a Table Containing One or More LOB Columns

e Creating a Nested Table Containing a LOB

* Inserting a Row by Selecting a LOB From Another Table

* Inserting a LOB Value Into a Table

* Inserting a Row by Initializing a LOB Locator Bind Variable
« Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()
e Updating a Row by Selecting a LOB From Another Table

e Parallel DDL and Parallel DML(PDML) Support for LOBs

" See Also:

For guidelines on how to | NSERT into a LOB when binds of more than 4000
bytes are involved, see the following sections in "Binds of All Sizes in
INSERT and UPDATE Operations".

Creating a Table Containing One or More LOB Columns

ORACLE

You can create a table containing one or more LOB columns.

When you use functions, EMPTY_BLOB() and EMPTY_CLOB(), the resulting LOB is
initialized, but not populated with data. Also note that LOBs that are empty are not
NULL.

¢ See Also:

Oracle Database SQL Language Referencefor a complete specification of
syntax for using LOBs in CREATE TABLE and ALTER TABLE with:

e BLOB, CLOB, NCLOB and BFI LE columns
e EMPTY_BLOB and EMPTY_CLOB functions

* LOB storage clause for persistent LOB columns, and LOB attributes of
embedded objects

6-1

ORACLE

Chapter 6
Creating a Table Containing One or More LOB Columns

Scenario

These examples use the following Sample Schemas:
* Human Resources (HR)

e Order Entry (CE)

e Product Media (PM

" Note:

Note HR and OE schemas must exist before the PMschema is created.

Note:

Because you can use SQL DDL directly to create a table containing one or
more LOB columns, it is not necessary to use the DBVS_LOB package.

[* Setup script for creating Print_media,
Online_nedia and associated structures
*|

DROP USER pm CASCADE;

DROP DI RECTORY ADPHOTO DI R;

DROP DI RECTORY ADCOWPOSI TE DI R;

DROP DI RECTORY ADGRAPHI C DIR;

DROP | NDEX onl i nemedi a CASCADE CONSTRAI NTS;
DROP | NDEX pri nt medi a CASCADE CONSTRAINTS;
DROP TABLE onl i ne_medi a CASCADE CONSTRAI NTS;
DROP TABLE print_medi a CASCADE CONSTRAINTS;
DROP TYPE textdoc_typ;

DROP TYPE textdoc_tab;

DROP TYPE adheader _typ;

DROP TABLE adheader _typ;

CREATE USER pmidentified by password;
GRANT CONNECT, RESOURCE to pm

CREATE DI RECTORY ADPHOTO DIR AS '/tnp/';
CREATE DI RECTORY ADCOWPCSI TE_ DIR AS ' /tnp/';
CREATE DI RECTORY ADGRAPHIC DIR AS '/tnp/"';
CREATE DI RECTORY media_dir AS '/tnp/';

GRANT READ ON DI RECTCRY ADPHOTO DIR to pm
GRANT READ ON DI RECTCRY ADCOVPCSI TE_DIR to pm
GRANT READ ON DI RECTCRY ADGRAPHIC DIR to pm
GRANT READ ON DI RECTORY nedia_dir to pm

CONNECT pmi password (or &pass);
COWM T,

CREATE TABLE a_table (bl ob_col BLOB);

CREATE TYPE adheader _typ AS OBJECT (
header _nane VARCHAR2(256) ,

6-2

Chapter 6
Creating a Nested Table Containing a LOB

creation_date DATE,
header _t ext VARCHAR(1024) ,
| ogo BLOB);

CREATE TYPE textdoc_typ AS OBJECT (
docunent _typ VARCHAR2(32),
formatted_doc BLOB);

CREATE TYPE Textdoc_ntab AS TABLE of textdoc_typ;

CREATE TABLE adheader _tab of adheader_typ (
Ad_final text DEFAULT EMPTY_CLOB(), CONSTRAINT
Take CHECK (Take IS NOT NULL), DEFAULT NULL);

CREATE TABLE onl i ne_nedi a

(product _id NUMBER(6),

product _phot o ORDSYS. ORDI mage,

product _phot o_si gnat ure ORDSYS. ORDI mageSi gnat ur e,
product _t hunbnai | ORDSYS. ORDI mage,

product _vi deo ORDSYS. ORDVi deo,

product _audi o ORDSYS. ORDAudi o,

product _text CLOB,

product _testinonial s ORDSYS. ORDDoc) ;

CREATE UNI QUE | NDEX onl i nemedi a_pk
ON online_nedia (product_id);

ALTER TABLE onl i ne_medi a

ADD (CONSTRAINT onl i nemedi a_pk

PRI MARY KEY (product_id), CONSTRAINT |oc_c_id_fk

FOREI GN KEY (product _id) REFERENCES oe. product _i nformation(product _i d)

)s

CREATE TABLE print_media
(product _id NUVBER(6),

ad_i d NUVBER(6),
ad_conposi te BLOB,
ad_sourcetext CLOB,
ad_finaltext CLOB,
ad_fktextn NCLOB,
ad_testdocs_ntab textdoc_tab,
ad_phot o BLGB,

ad_graphi ¢ BFILE,

ad_header adheader _typ,
press_rel ease LONG) NESTED TABLE ad_textdocs_ntab STORE AS textdocs_nest edt ab;

CREATE UNI QUE | NDEX pri nt medi a_pk
ON print_nedia (product_id, ad_id);

ALTER TABLE print_nedia

ADD (CONSTRAINT pri nt medi a_pk

PRI MARY KEY (product id, ad_id),

CONSTRAI'NT printnedi a_fk FOREI GN KEY (product _id)
REFERENCES oe. product _i nf or mati on(product _i d)

)s

Creating a Nested Table Containing a LOB

You can create a nested table containing a LOB.

ORACLE 6-3

Chapter 6
Inserting a Row by Selecting a LOB From Another Table

You must create the object type that contains the LOB attributes before you create a
nested table based on that object type. In the example that follows, table Pri nt _nedi a
contains nested table ad_t ext doc_nt ab that has type t ext doc_t ab. This type uses two
LOB data types:

e BFILE - an advertisement graphic
* CLOB - an advertisement transcript

The actual embedding of the nested table is accomplished when the structure of the
containing table is defined. In our example, this is effected by the NESTED TABLE
statement when the Pri nt _nedi a table is created as shown in the following example:

/* Create type textdoc_typ as the base type
for the nested table textdoc_ntab,
where textdoc_ntab contains a LOB:

*|

CREATE TYPE textdoc_typ AS OBJECT

(
docunent _typ VARCHAR2(32) ,
formatted_doc BLOB

);

/

/* The type has been created. Now you need a */
/* nested table of that type to enbed in */

/* table Print_media, so: */

CREATE TYPE textdoc_ntab AS TABLE of textdoc_typ;
/

CREATE TABLE textdoc_ntable (
i d NUMBER,
ntab_col textdoc_ntab)
NESTED TABLE ntab_col STORE AS textdoc_nest edt ab;

DROP TYPE textdoc_typ force;
DROP TYPE textdoc_ntab;
DROP TABLE text doc_ntabl e;

¢ See Also:

e "Creating a Table Containing One or More LOB Columns”

e Oracle Database SQL Language Reference for further information on
CREATE TABLE

Inserting a Row by Selecting a LOB From Another Table

You can insert a row containing a LOB as SELECT.

ORACLE 6-4

Chapter 6
Inserting a LOB Value Into a Table

< Note:

Persistent LOB types BLOB, CLOB, and NCLOB, use copy semantics, as
opposed to reference semantics that apply to BFI LEs. When a BLOB, CLOB, or
NCLOB is copied from one row to another in the same table or a different
table, the actual LOB value is copied, not just the LOB locator.

For LOBs, one of the advantages of using an object-relational approach is that you
can define a type as a common template for related tables. For instance, it makes
sense that both the tables that store archival material and working tables that use
those libraries, share a common structure.

For example, assuming Pri nt _medi a and Onl i ne_nedi a have identical schemas. The
statement creates a new LOB locator in table Print _nedia. It al so copies the LOB
data from Onl i ne_nedi a to the location pointed to by the new LOB locator inserted in
table Print _nedi a.

The following code fragment is based on the fact that the table Onl i ne_nedi a is of the
same type as Print _nedi a referenced by the ad_t ext docs_nt ab column of table
Print_medi a. It inserts values into the library table, and then inserts this same data
into Pri nt _nmedi a by means of a SELECT.

[* Store records in the archive table Online_media: */
I NSERT | NTO Onl i ne_nredi a
VALUES (3060, NULL, NULL, NULL, NULL
"some text about this CRT Mnitor', NULL);

/* Insert values into Print_media by selecting fromOnline_nedia: */
I NSERT | NTO Print_media (product_id, ad_id, ad_sourcetext)
(SELECT product _id, 11001, product _text
FROM Onl i ne_nedi a WHERE product _id = 3060);

¢ See Also:
e Oracle Database SQL Language Reference for more information on

| NSERT

e Oracle Database Sample Schemas for a description of the PM Schema
and the Print _nmedi a table used in this example

Inserting a LOB Value Into a Table
You can insert a LOB value using EMPTY_CLOB() or EMPTY_BLOB() .

Usage Notes

Here are guidelines for inserting LOBS:

ORACLE 6-5

Chapter 6
Inserting a Row by Initializing a LOB Locator Bind Variable

Before Inserting Make the LOB Column Non-Null

Before you write data to a persistent LOB, make the LOB column non-NULL; that is, the
LOB column must contain a locator that points to an empty or populated LOB value.
You can initialize a BLOB column value by using the function EMPTY_BLOB() as a default
predicate. Similarly, a CLOB or NCLOB column value can be initialized by using the
function EMPTY_CLOB() .

You can also initialize a LOB column with a character or raw string less than 4000
bytes in size. For example:

I NSERT | NTO Print_nmedia (product_id, ad_id, ad_sourcetext)
VALUES (1, 1, '"This is a One Line Advertisenent');

Note that you can also perform this initialization during the CREATE TABLE operation.

¢ See Also:

Creating a Table Containing One or More LOB Columns

These functions are special functions in Oracle SQL, and are not part of the DBVS_LOB
package.

[* In the new row of table Print_nedia,
the colums ad_sourcetext and ad_fltextn are initialized using EMPTY_CLOB(),
the col ums ad_conposite and ad_photo are initialized using EMPTY_BLOB(),
the colum formatted-doc in the nested table is initialized using
EMPTY_BLOB(),
the colum logo in the colum object is initialized using EMPTY_BLOB(): */

I NSERT | NTO Print_nedia
VALUES (3060, 11001, EMPTY_BLOB(), EMPTY_CLOB(),EMPTY_CLOB(), EMPTY_CLOB(),
textdoc_tab(textdoc_typ (' HTM.', EMPTY_BLOB())), EMPTY_BLOB(), NULL,
adheader _typ('any header nane', <any date> 'ad header text goes here',
EMPTY_BLOB()),

"Press rel ease goes here');

Inserting a Row by Initializing a LOB Locator Bind Variable

ORACLE

You can insert a row by initializing a LOB locator bind variable.

Examples for this use case are provided in several programmatic environments:
Topics:

e About Inserting Rows with LOB Locator Bind Variables

e PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable

e C (OCI): Inserting a Row by Initializing a LOB Locator Bind Variable

e« COBOL (Pro*COBOL): Inserting a Row by Initializing a LOB Locator Bind Variable
e C/C++ (Pro*C/C++): Inserting a Row by Initializing a LOB Locator Bind Variable

e Java (JDBC): Inserting a Row by Initializing a LOB Locator Bind Variable

e SQL: Oracle Database SQL Language Reference, the | NSERT statement

6-6

Chapter 6
Inserting a Row by Initializing a LOB Locator Bind Variable

e C (OCI): Oracle Call Interface Programmer's Guide "Relational Functions"
e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

 COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and embedded SQL and precompiler directives
— | NSERT.

e C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guide | NSERT

* Java (JDBC):Oracle Database JDBC Developer's Guide "Working With LOBs" —
Creating and Populating a BLOB or CLOB Colum

About Inserting Rows with LOB Locator Bind Variables

You need to consider these points.

Preconditions
Before you can insert a row using this technique, the following conditions must be met:

* The table containing the source row must exist.
* The destination table must exist.

For details on creating tables containing LOB columns, see "LOB Storage
Parameters".

Usage Notes

For guidelines on how to | NSERT and UPDATE a row containing a LOB when binds of
more than 4000 bytes are involved, see "Binds of All Sizes in INSERT and UPDATE
Operations".

Syntax

Review these syntax references for details on using this operation in each
programmatic environment:

PL/SQL.: Inserting a Row by Initializing a LOB Locator Bind Variable

You can insert a row by initializing a LOB locator bind variable in PL/SQL

[* This fileis installed in the follow ng path when you install */
/* the database: $ORACLE HOWE/ r dbms/ deno/ | obs/ pl sql /1insert.sqgl */

/* inserting a row through an insert statenent */

CREATE OR REPLACE PROCEDURE insertLOB proc (Lob_loc IN BLOB) IS

BEG N
/* Insert the BLOB into the row */
DBMS_OUTPUT. PUT_LI NE(" ------------ LOB | NSERT EXAMPLE ------------ ");

I NSERT | NTO print_media (product_id, ad_id, ad_photo)
val ues (3106, 60315, Lob_loc);
END;
/

C (OCI): Inserting a Row by Initializing a LOB Locator Bind Variable

You can insert a row by initializing a LOB locator bind variable in C (OCI).

ORACLE 6-7

Chapter 6
Inserting a Row by Initializing a LOB Locator Bind Variable

/* This file is installed in the foll owing path when you install */
/* the database: $ORACLE HOVE/ r dbns/ deno/ | obs/ oci/linsert.c */

/* Insert the Locator into table using Bind Variables. */
#incl ude <oratypes. h>
#incl ude <l obdeno. h>
voi d insertLOB proc(CCl LobLocator *Lob_loc, OCI Env *envhp,
OCl Error *errhp, OCl SvcCtx *svchp, OClIStnt *stnthp)

{
int product _i d;
QOCl Bi nd *bndhp3;
QOCl Bi nd *bndhp2;
QOCl Bi nd *bndhpl;
text *insstm =
(text *) "INSERT INTO Print_nedia (product_id, ad_id, ad_sourcetext) \
VALUES (:1, :2, :3)";
printf ("----------- OCl Lob Insert DemD -------------- \n");

/* Insert the locator into the Print_media table with product_i d=3060 */
product _id = (int)3060;

/* Prepare the SQL statement */

checkerr (errhp, OCIStntPrepare(stnthp, errhp, insstnt, (ub4)
strlen((char *) insstnt),
(ub4) OCI _NTV_SYNTAX, (ub4)OCI _DEFAULT));

/* Binds the bind positions */

checkerr (errhp, OC BindByPos(stnthp, &bndhpl, errhp, (ub4) 1,
(void *) &product _id, (sbh4) sizeof(product_id),
SQT_INT, (void *) 0, (ub2 *)0, (ub2 *)O0,
(ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT));

checkerr (errhp, OC BindByPos(stnthp, &bndhpl, errhp, (ub4) 2,
(void *) &product _id, (sh4) sizeof(product_id),
SQT_INT, (void *) 0, (ub2 *)0, (ub2 *)O0,
(ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT));

checkerr (errhp, OC BindByPos(stnthp, &bndhp2, errhp, (ub4) 3,
(void *) &Lob_loc, (sh4) 0, SQT_CLOB,
(void *) 0, (ub2 *)0, (ub2 *)0,
(ub4) 0, (ub4 *) 0, (ub4) OC _DEFAULT));

/* Execute the SQL statement */

checkerr (errhp, OCl StntExecute(svchp, stnthp, errhp, (ub4) 1, (ub4) O,
(CONST OCl Snapshot*) 0, (OCI Snapshot *)
(ub4) OCI _DEFAULT));

0,

}

COBOL (Pro*COBOL): Inserting a Row by Initializing a LOB Locator
Bind Variable

You can insert a row by initializing a LOB locator bind variable in COBOL
(Pro*COBOL).

* This file is installed in the follow ng path when you install
* the database: $ORACLE_HOVE rdbns/ deno/ | obs/ procob/linsert. pco

| DENTI FI CATI ON DI VI SI ON.

ORACLE 6-8

Chapter 6
Inserting a Row by Initializing a LOB Locator Bind Variable

PROGRAM I D. | NSERT- LCB.
ENVI RONMVENT DI VI SI ON.
DATA DI VI SI ON.

WORKI NG- STORAGE SECTI ON.

01 BLOBL SQL-BLCB.
01 USERID PIC X(11) VALUES "PM password".
EXEC SQL | NCLUDE SQLCA END- EXEC.

PRCCEDURE DI VI SI ON.
| NSERT- LCB.

EXEC SQL WHENEVER SQLERROR DO PERFORM SQL- ERROR END- EXEC.
EXEC SQL CONNECT : USERI D END- EXEC.
* |nitialize the BLOB | ocator
EXEC SQL ALLCCATE : BLOB1 END- EXEC.
* Popul ate the LOB
EXEC SQL WHENEVER NOT FOUND GOTO END- OF- BLOB END- EXEC.
EXEC SQL
SELECT AD_PHOTO | NTO : BLOB1 FROM PRI NT_MEDI A
VWHERE PRCDUCT I D = 2268 AND AD | D = 21001 END- EXEC.

* Insert the value with PRODUCT_I D of 3060
EXEC SQL
I NSERT | NTO PRI NT_MEDI A (PRODUCT I D, AD_PHOTO)
VALUES (3060, 11001, :BLOB1)END- EXEC.

* Free resources held by |ocator
END- OF- BLOB.
EXEC SQL WHENEVER NOT FOUND CONTI NUE END- EXEC.
EXEC SQL FREE : BLOB1 END- EXEC.
EXEC SQL ROLLBACK WORK RELEASE END- EXEC.
STCP RUN.

SQL- ERRR
EXEC SQL WHENEVER SQLERROR CONTI NUE END- EXEC.
DI SPLAY " "
DI SPLAY " ORACLE ERRCR DETECTED: "
DI SPLAY " "
DI SPLAY SQLERR\C.
EXEC SQL ROLLBACK WORK RELEASE END- EXEC.
STOP RUN.

¢ Note:

For simplicity in demonstrating this feature, this example does not perform
the password management techniques that a deployed system normally
uses. In a production environment, follow the Oracle Database password
management guidelines, and disable any sample accounts. See Oracle
Database Security Guide for password management guidelines and other
security recommendations.

ORACLE 6-9

Chapter 6
Inserting a Row by Initializing a LOB Locator Bind Variable

C/C++ (Pro*C/C++): Inserting a Row by Initializing a LOB Locator Bind

Variable

ORACLE

You can insert a row by initializing a LOB locator bind variable in C/C++ (Pro*C/C++).

/*
/*

This file is installed in the follow ng path when you install */
the database: $ORACLE_HOVE/ rdbms/ deno/ | obs/ proc/linsert.pc */

#i ncl ude <oci . h>
#i ncl ude <stdio. h>
#include <sgl ca. h>

VoI

{

Vo

VoI

d Sample_Error()

EXEC SQL WHENEVER SQLERROR CONTI NUE;

printf("%*s\n", sqlca.sqglerrmsqlerrm, sqglca.sqglerrmsglerrnt);
EXEC SQL ROLLBACK WORK RELEASE;

exit(1);

d insertUseBindVari abl e_proc(Rownum Lob_| oc)
int Rownum Rownun?;
CCl Bl obLocat or *Lob_| oc;

EXEC SQL WHENEVER SQLERRCR DO Sanpl e_Error();
EXEC SQL I NSERT INTO Print_media (product_id, ad_id, ad_photo)
VALUES (: Rownum :Rownun2, :Lob_loc);

idinsertBLOB proc()

CCl Bl obLocat or *Lob_| oc;

/* Initialize the BLOB Locator: */
EXEC SQ. ALLOCATE : Lob_I oc;

/* Select the LOB fromthe row where product_id = 2268 and ad_i d=21001: */
EXEC SQL SELECT ad_photo INTO : Lob_| oc
FROM Print _medi a WHERE product _id = 2268 AND ad_id = 21001,

/* Insert into the row where product_id = 3106 and ad_id = 13001: */
i nsert UseBi ndVari abl e_proc(3106, 13001, Lob_loc);

/* Rel ease resources held by the locator: */
EXEC SQ. FREE : Lob_| oc;

d main()

char *samp = "pm password”;

EXEC SQL CONNECT : pm

i nsertBLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;

6-10

Chapter 6
Inserting a Row by Initializing a LOB Locator Bind Variable

Java (JDBC): Inserting a Row by Initializing a LOB Locator Bind
Variable

You can insert a row by initializing a LOB locator bind variable in Java (JDBC).

[* This file is installed in the follow ng path when you install */
/* the database: $ORACLE_HOVE rdbns/ deno/ | obs/javallinsert.java */

/1 Core JDBC cl asses:

import java.sql.DriverMnager;
import java.sql.Connection;

inport java.sql.Statement;

import java.sql.PreparedStatenent;
inport java.sql.ResultSet;

import java.sql.SQ.Exception;

/1 Oracle Specific JDBC classes:
import oracle.sql.*;
inmport oracle.jdbc.driver.*;

public class linsert
{
public static void main (String args [])
throws Exception
{
/1 Load the Oracle JDBC driver
DriverManager.registerDriver (new oracle.jdbc.driver.OacleDriver ());
/1 Connect to the database:
Connection conn =
Driver Manager . get Connection ("jdbc:oracle:oci 8: @, "pnf', "password");

/] 1t's faster when auto commit is off:
conn. set AutoConmit (fal se);

/1 Create a Statenent:
Statement stnt = conn.createStatenent ();

try

{
Resul t Set rset = stnt.executeQuery (
" SELECT ad_photo FROM Print_nedia WHERE product _id = 3106 AND ad_id = 13001");
if (rset.next())

Il retrieve the LOB |ocator fromthe Result Set
BLOB adphot o_bl ob = ((Oracl eResul t Set)rset).getBLOB (1);
Oracl ePreparedStatenent ops =
(Oracl ePreparedSt at ement) conn. prepar eSt at ement (
"I NSERT INTO Print_nedia (product_id, ad_id, ad_photo) VALUES (2268, "

+"21001, ?)");
ops. set Bl ob(1, adphoto_bl ob);
ops. execute();
conn. commit();
conn. cl ose();
}
}
catch (SQLException e)
{
e.printStackTrace();
}

ORACLE 6-11

Chapter 6
Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()

}
}

Updating a LOB with EMPTY_CLOB() or EMPTY_BLOBY()

You can UPDATE a LOB with EMPTY_CLOB() or EVPTY_BLOB().

¢ Note:

Performance improves when you update the LOB with the actual value,
instead of using EMPTY_CLOB() or EMPTY_BLOB() .

Preconditions

Before you write data to a persistent LOB, make the LOB column non-NULL; that is, the
LOB column must contain a locator that points to an empty or populated LOB value.
You can initialize a BLOB column value by using the function EMPTY_BLOB() as a default
predicate. Similarly, a CLOB or NCLOB column value can be initialized by using the
function EMPTY_CLOB() .

You can also initialize a LOB column with a character or raw string less than 4000
bytes in size. For example:

UPDATE Print_nedi a
SET ad_sourcetext = 'This is a One Line Story'
VHERE product _id = 2268;

You can perform this initialization during CREATE TABLE (see "Creating a Table
Containing One or More LOB Columns") or, as in this case, by means of an | NSERT.

The following example shows a series of updates using the EMPTY_CLOB operation to
different data types.
UPDATE Print_media SET ad_sourcetext = EMPTY_CLOB()

VHERE product _id = 3060 AND ad_id = 11001,

UPDATE Print_media SET ad_fltextn = EMPTY_CLOB()
VHERE product _id = 3060 AND ad_id = 11001,

UPDATE Print _media SET ad_photo = EMPTY_BLOB()
VHERE product _id = 3060 AND ad_id = 11001,

See Also:

SQL: Oracle Database SQL Language Reference for more information on
UPDATE

ORACLE 6-12

Chapter 6
Updating a Row by Selecting a LOB From Another Table

Updating a Row by Selecting a LOB From Another Table

You can use the SQL UPDATE AS SELECT statement to update a row containing a LOB
column by selecting a LOB from another table.

To use this technique, you must update by means of a reference. For example, the
following code updates data from onl i ne_nedi a:

Rem Updating a row by selecting a LOB from another table (persistent LOBs)

UPDATE Print_nedi a SET ad_sourcetext =
(SELECT * product _text FROM online_nedia WHERE product _id = 3060);
VWHERE product _id = 3060 AND ad_id = 11001;

Parallel DDL and Parallel DML(PDML) Support for LOBs

Oracle supports parallel execution of most of the following DML operations when
performed on partitioned tables with SecureFiles LOBs or BasicFiles LOBs, and non-
partitioned tables with SecureFiles LOBs only:

* CREATE TABLE AS SELECT

* I NSERT, I NSERT AS SELECT, Multi-table | NSERT
e DELETE

* UPDATE

e MERGE (conditional UPDATE and | NSERT)

e ALTER TABLE MOVE

e SQL Loader

e Import/Export

Restrictions

» Parallel insert direct load (PIDL) is disabled if a table also has a BasicFiles LOB
column, in addition to a SecureFiles LOB column.

» PDML doesn't work when there are any domain indexes defined on the LOB
column.

» Parallelism must be specified only for top-level non-partitioned tables.

 Use ALTER TABLE MIVE with LOB storage clause, to change the storage properties
of LOB columns instead of ALTER TABLE MODI FY. ALTER TABLE MOVE is more
efficient because it executes in parallel and does not generate undo logs.

¢ See Also:

Oracle Database Administrator's Guide section "Managing Processes for
Parallel SQL Execution"

Oracle Database SQL Language Reference section "ALTER TABLE"

ORACLE 6-13

Value Semantics LOBSs

This part describes SQL semantics for LOBs supported in the SQL and PL/SQL
environments.

This part contains these chapters:

* SQL Semantics and LOBs
* PL/SQL Semantics for LOBs
e Migrating Columns from LONGs to LOBs

ORACLE

SQL Semantics and LOBs

Various SQL semantics are supported for LOBs.

These techniques allow you to use LOBs directly in SQL code and provide an
alternative to using LOB-specific APIs for some operations.

Topics:

About Using LOBs in SQL

SQL Functions and Operators Supported for Use with LOBs
Implicit Conversion of LOB Data Types in SQL
Unsupported Use of LOBs in SQL

VARCHAR?2 and RAW Semantics for LOBs

Built-in Functions for Remote LOBs and BFILEs

About Using LOBs in SQL

You can access CLOB and NCLOB data types using SQL VARCHAR? semantics, such as
SQL string operators and functions. (LENGTH functions can be used with BLOB data
types and CLOB and NCLOBs.) These techniques are beneficial in the following
situations:

ORACLE

When performing operations on LOBs that are relatively small in size (up to about
100K bytes).

After migrating your database from LONG columns to LOB data types, any SQL
string functions, contained in your existing PL/SQL application, continue to work
after the migration.

SQL semantics are not recommended in the following situations:

When you use advanced features such as random access and piece-wise fetch,
you must use LOB APIs.

When performing operations on LOBs that are relatively large in size (greater than
1MB) using SQL semantics can impact performance. Using the LOB APIs is
recommended in this situation.

Note:

SQL semantics are used with persistent and temporary LOBs. (SQL
semantics do not apply to BFI LE columns because BFI LE is a read-only
data type.)

7-1

Chapter 7
SQL Functions and Operators Supported for Use with LOBs

SQL Functions and Operators Supported for Use with LOBS

Many SQL operators and functions that take VARCHAR2 columns as arguments also
accept LOB columns.

About SQL Functions and Operators for LOBs

ORACLE

This list summarizes those categories of SQL functions and operators that are
supported for use with LOBs. Details on individual functions and operators are given in
Table 7-1.

* Concatenation
e Comparison
(Some comparison functions are not supported for use with LOBS.)
e Character functions
* Conversion
(Some conversion functions are not supported for use with LOBS.)

The following categories of functions are not supported for use with LOBs:

* Aggregate functions

Note that although pre-defined aggregate functions are not supported for use with
LOBs, you can create user-defined aggregate functions to use with LOBs.

e Unicode functions

Details on individual functions and operators are in Table 7-1, which lists SQL
operators and functions that take VARCHAR? types as operands or arguments, or return
a VARCHAR? value. The SQL column identifies the functions and operators that are
supported for CLOB and NCLOB data types. (The LENGTH function is also supported for
the BLOB data type.)

The DBM5_LOB PL/SQL package supplied with Oracle Database supports using LOBs
with most of the functions listed in Table 7-1 as indicated in the PL/SQL column.

Note:

Operators and functions with No indicated in the SQL column of Table 7-1 do
not work in SQL queries used in PL/SQL blocks - even though some of these
operators and functions are supported for use directly in PL/SQL code.

¢ See Also:

Oracle Database Data Cartridge Developer's Guide for more information
about user-defined aggregate functions

7-2

Chapter 7
SQL Functions and Operators Supported for Use with LOBs

Implicit Conversion of CLOB to CHAR Types

Functions designated as CNV in the SQL or PL/SQL column of Table 7-1 are
performed by converting the CLOB to a character data type, such as VARCHAR?. In the
SQL environment, only the first 4K bytes of the CLOB are converted and used in the
operation; in the PL/SQL environment, only the first 32K bytes of the CLOB are
converted and used in the operation.

Table 7-1 SQL VARCHAR2 Functions and Operators on LOBs
|

Category Operator / Function SQL Example /| Comments SQL PL/SQL

Concatenation ||, CONCAT() Select clobCol || clobCol2 fromtab; Yes Yes

Comparison = ,1=,>>= < <=<> if clobCol=clobCol 2 then... No Yes

Nz

Comparison [N, NOT I N if clobCol NOT IN (clobl, clob2, clob3) No Yes
then. ..

Comparison SOME, ANY, ALL if clobCol < SOME (select clobCol 2 No N/A
from..) then...

Comparison BETWEEN if clobCol BETWEEN cl obCol 2 and No Yes
clobCol 3 then...

Comparison LI KE [ESCAPE] if clobCol LIKE '%attern% then... Yes Yes

Comparison 'S [NOT] NULL where cl obCol 1S NOT NULL Yes Yes

Character I NI TCAP, NLS_I NI TCAP sel ect | NI TCAP(cl obCol) from.. CNV CNV

Functions

Character LONER, NLS LOWER, ...where LOVER(cl obCol 1) = Yes Yes

Functions UPPER, NLS_UPPER LOAER(cl obCol 2)

Character LPAD, RPAD sel ect RPAD(cl obCol, 20, ' La") from.. Yes Yes

Functions

Character TRIM LTRIM RTRI M ...where RTRIMLTRI Mcl obCol , "' ab"), Yes Yes

Functions "xy') ='cd

Character REPLACE sel ect REPLACE(cl obCol, 'orig',' new) Yes Yes

Functions from..

Character SOUNDEX ... where SOUNDEX(clobCd) = CNV CNV

Functions SOUNDEX(" SMYTHE')

Character SUBSTR ...where substr(clobCol, 1,4) =1like Yes Yes

Functions "TH S

Character TRANSLATE sel ect TRANSLATE(cl obCol , CNV CNV

Functions "123abc','NC) from..

Character ASCl | sel ect ASCII(clobCol) from.. CNV CNV

Functions

Character I NSTR ...where instr(clobCol, 'book') = 11 Yes Yes

Functions

Character LENGTH ...where length(clobCol) !=7; Yes Yes

Functions

ORACLE 7-3

Chapter 7

SQL Functions and Operators Supported for Use with LOBs

Table 7-1 (Cont.) SQL VARCHAR2 Functions and Operators on LOBs
]

Category Operator / Function SQL Example | Comments SQL PL/ISQL
Character NLSSORT ...Where NLSSORT (clobCol,"' NLS_SORT = CNV CNV
Functions German') > NLSSORT ("S',"'NLS_SORT =
Cerman')
Character | NSTRB, SUBSTRB, These functions are supported only for CLOBs that Yes Yes
Functions LENGTHB use single-byte character sets. (LENGTHB is
supported for BLOBs and CLOBs.)
Character REGEXP_LI KE This function searches a character column for a Yes Yes
Functions - pattern. Use this function in the WHERE clause of a
Regular_ query to return rows matching the regular
Expressions expression you specify.
¢ See Also:
e Oracle Database SQL Language Reference
for syntax details on SQL functions for regular
expressions.
e Oracle Database Development Guide for
information on using regular expressions with
the database.
Character REGEXP_REPLACE This function searches for a pattern in a character Yes Yes
Functions - column and replaces each occurrence of that
Regular pattern with the pattern you specify.
Expressions
Character REGEXP_I NSTR This function searches a string for a given Yes Yes
Functions - occurrence of a regular expression pattern. You
Regular specify which occurrence you want to find and the
Expressions start position to search from. This function returns
an integer indicating the position in the string
where the match is found.
Character REGEXP_SUBSTR This function returns the actual substring matching Yes Yes
Functions - the regular expression pattern you specify.
Regular
Expressions
Conversion CHARTOROW D CHARTOROW D(¢l obCol) CNV CNV
Conversion COVPOSE COVPOSE(" string') CNV CNV
Returns a Unicode string given a string in the data
type CHAR, VARCHAR2, CLOB, NCHAR, NVARCHAR?2,
NCLOB. An o code point qualified by an umlaut
code point is returned as the o-umlaut code point.
Conversion DECOVPCSE DECOVPOSE(" str' [CANONI CAL | CNV CNV
COVPATIBILITY])
Valid for Unicode character arguments. Returns a
Unicode string after decomposition in the same
character set as the input. o-umlaut code point is
returned as the o code point followed by the umlaut
code point.
ORACLE 7-4

Chapter 7

SQL Functions and Operators Supported for Use with LOBs

Table 7-1 (Cont.) SQL VARCHAR2 Functions and Operators on LOBs
]

Category Operator / Function SQL Example | Comments SQL PL/ISQL
Conversion HEXTORAW HEXTORAW(CLOB) No CNV
Conversion CONVERT sel ect Yes CNV
CONVERT(cl obCol , " WESDEC , ' WESHP')
from..
Conversion TO_DATE TO_DATE(cl obCol) CNV CNV
Conversion TO _NUMBER TO _NUMBER(cl obCol) CNV CNV
Conversion TO TI MESTAWP TO_TI MESTAMP(¢l 0bCol) No CNV
Conversion TO MULTI _BYTE TO _MULTI _BYTE(cl obCol) CNV CNV
TO_SI NGLE_BYTE TO_SI NGLE_BYTE(cl obCol)
Conversion TO_CHAR TO_CHAR(cl obCol) Yes Yes
Conversion TO_NCHAR TO_NCHAR(cl obCol) Yes Yes
Conversion TO LOB I NSERT I NTO... SELECT N/A N/A
TO LOB(I ongCol). ..
Note that TO_LOB can only be used to create or
insert into a table with LOB columns as SELECT
FROMa table with a LONG column.
Conversion TO CLCB TO_CLOB(var char 2Col) Yes Yes
Conversion TO_NCLOB TO_NCLOB(var char 2Cl ob) Yes Yes
Aggregate COUNT sel ect count(clobCol) from.. No N/A
Functions
Aggregate MAX, M N sel ect MAX(clobCol) from.. No N/A
Functions
Aggregate GROUPI NG sel ect grouping(clobCol) from.. group No N/A
Functions by cube (clobCol);
Other GREATEST, LEAST sel ect GREATEST (cl obCol 1, clobCol 2) No CNV
Functions from..
Other DECODE sel ect DECCDE(cl obCol, conditionl, CNV CNV
Functions val uel, defaultVvalue) from..
Other NVL sel ect NvL(clobCol,' NULL") from.. Yes Yes
Functions
Other DUMP sel ect DUMP(cl obCol) from.. No N/A
Functions
Other VS| ZE sel ect VSIZE(cl obCol) from.. No N/A
Functions
Unicode I NSTR2, SUBSTR2, These functions use UCS2 code point semantics. No CNV
LENGTH2, LI KE2
Unicode | NSTR4, SUBSTR4, These functions use UCS4 code point semantics. No CNV
LENGTH4, LI KE4
Unicode I NSTRC, SUBSTRC, These functions use complete character No CNV
LENGTHC, LI KEC semantics.
ORACLE 7-5

Chapter 7
SQL Functions and Operators Supported for Use with LOBs

CLOBs and NCLOBs Do Not Follow Session Collation Settings

Standard operators that operate on CLOBs and NCLOBs without first converting them to
VARCHAR2 or NVARCHAR?, (those marked Yes in the SQL or PL/SQL columns of

Table 7-1), do not behave linguistically, except for REGEXP functions. Binary
comparison of the character data is performed irrespective of the NLS_COWP and

NLS SORT parameter settings.

These REGEXP functions are the exceptions, where, if CLOB or NCLOB data is passed in,
the linguistic comparison is similar to the comparison of VARCHAR2 and NVARCHAR2
values.

REGEXP_LIKE
- REGEXP_REPLACE
« REGEXP_INSTR

. REGEXP_SUBSTR
. REGEXP_COUNT

< Note:
CLOBs and NCLOBs support the default USING NLS_COMP option.

¢ See Also:

Oracle Database Reference for more information about NLS_COWP

UNICODE Support

ORACLE

Variations on certain functions are provided for Unicode support.

Variations on the | NSTR, SUBSTR, LENGTH, and LI KE functions are provided for Unicode
support. (These variations are indicated as Unicode in the Category column of
Table 7-1.)

See Also:

e Oracle Database Globalization Support Guide
e Oracle Database Development Guide
e Oracle Database SQL Language Reference

Oracle Database PL/SQL Packages and Types Referencefor a detailed
description on the usage of UNICODE functions

7-6

Chapter 7
SQL Functions and Operators Supported for Use with LOBs

Codepoint Semantics

Codepoint semantics of the | NSTR, SUBSTR, LENGTH, and LI KE functions, described in
Table 7-1, differ depending on the data type of the argument passed to the function.
These functions use different codepoint semantics depending on whether the
argument is a VARCHAR2 or a CLOB type as follows:

e When the argument is a CLOB, UCS2 codepoint semantics are used for all
character sets.

* When the argument is a character type, such as VARCHAR2, the default codepoint
semantics are used for the given character set:

— UCS2 codepoint semantics are used for ALL6UTF16 and UTF8 character
sets.

— UCS4 codepoint semantics are used for all other character sets, such as
AL32UTF8.

e If you are storing character data in a CLOB or NCLOB, then note that the amount and
offset parameters for any APIs that read or write data to the CLOB or NCLOB are
specified in UCS2 codepoints. In some character sets, a full character consists
one or more UCS2 codepoints called a surrogate pair. In this scenario, you must
ensure that the amount or offset you specify does not cut into a full character. This
avoids reading or writing a partial character.

» Oracle Database helps to detect half surrogate pair on read or write boundaries in
case of SQL functions and in case of read/write through LOB APIs. The behavior
is as follows:

— If the starting offset is in the middle of a surrogate pair, an error is raised for
both read and write operations.

— If the read amount reads only a partial character, increment or decrement the
amount by 1 to read complete characters.

¢ Note:

The output amount may vary from the input amount.

— If the write amount overwrites a partial character, an error is raised to prevent
the corruption of existing data caused by overwriting of a partial character in
the destination CLOB or NCLCB.

¢ Note:

This check only applies to the existing data in the CLOB or NCLOB.
You must make sure that the incoming buffer for the write operation
starts and ends in complete characters.

ORACLE .

Chapter 7
Implicit Conversion of LOB Data Types in SQL

Return Values for SQL Semantics on LOBs

The return type of a function or operator that takes a LOB or VARCHAR? is the same as
the data type of the argument passed to the function or operator.

Functions that take more than one argument, such as CONCAT, return a LOB data type
if one or more arguments is a LOB. For example, CONCAT(CLOB, VARCHAR2) returns a
CLOB.

" See Also:

Oracle Database SQL Language Reference for details on the CONCAT
function and the concatenation operator (||).

A LOB instance is always accessed and manipulated through a LOB locator. This is
also true for return values: SQL functions and operators return a LOB locator when the
return value is a LOB instance.

Any LOB instance returned by a SQL function is a temporary LOB instance. LOB
instances in tables (persistent LOBs) are not modified by SQL functions, even when
the function is used in the SELECT list of a query.

LENGTH Return Value for LOBS

The return value of the LENGTH function differs depending on whether the argument
passed is a LOB or a character string:

e Ifthe input is a character string of length zero, then LENGTH returns NULL.

» For a CLOB of length zero, or an empty locator such as that returned by
EMPTY_CLOB(), the LENGTH and DBVMS_LOB. GETLENGTH functions return 0.

Implicit Conversion of LOB Data Types in SQL

Some LOB data types support implicit conversion and can be used in operations such
as cross-type assignment and parameter passing. These conversions are processed
at the SQL layer and can be performed in all client interfaces that use LOB types.

Implicit Conversion Between CLOB and NCLOB Data Types in SQL

ORACLE

The database enables you to perform operations such as cross-type assignment and
cross-type parameter passing between CLOB and NCLOB data types. The database
performs implicit conversions between these types when necessary to preserve
properties such as character set formatting.

Note that, when implicit conversions occur, each character in the source LOB is
changed to the character set of the destination LOB, if needed. In this situation, some
degradation of performance may occur if the data size is large. When the character set
of the destination and the source are the same, there is no degradation of
performance.

7-8

ORACLE

Chapter 7
Implicit Conversion of LOB Data Types in SQL

After an implicit conversion between CLOB and NCLOB types, the destination LOB is
implicitly created as a temporary LOB. This new temporary LOB is independent from
the source LOB. If the implicit conversion occurs as part of a define operation in a
SELECT statement, then any modifications to the destination LOB do not affect the
persistent LOB in the table that the LOB was selected from as shown in the following
example:

SQ> -- check | ob Iength before update
SQ> sel ect dbns_| ob. getl ength(ad_sourcetext) from Print_media
2 where product _i d=3106 and ad_id = 13001;

DBMS_LCB. GETLENGTH(AD_SOURCETEXT)

SQL>
SQL> declare

2 clobl clob;

3 ant nunber:=10;

4 BEGN
5 -- select a clob colum into a clob, no inplicit convesion
6 SELECT ad_sourcetext INTO clobl FROM Print_nedi a
7 VHERE product _i d=3106 and ad_i d=13001 FOR UPDATE;
8
9
0
1

dbns_lob.trin(clobl, ant); -- Trimthe selected |ob to 10 bytes
10 END;
11 /
PL/ SQL procedure successfully conpl et ed.

SQ> -- Mdification is performed on clobl which points to the

SQ> -- clob colum in the table

SQ> sel ect dbns_| ob. getl ength(ad_sourcetext) fromPrint_nedia
2 where product _i d=3106 and ad_id = 13001;

DBMS_LCB. GETLENGTH(AD_SOURCETEXT)

SQL>

SQL> rol | back;

Rol | back conplete.

SQ> -- check | ob I ength before update

SQ> sel ect dbns_| ob. getl ength(ad_sourcetext) fromPrint_nedia

2 where product _i d=3106 and ad_id = 13001;

DBMS_LCB. GETLENGTH(AD_SOURCETEXT)

205
SQL>
SQL> declare
2 nclobl nclob;
3 ant nunber:=10;
4 BEGN
5
6 -- select a clob colum into a nclob, inplicit conversion occurs
7 SELECT ad_sourcetext INTO ncl obl FROM Print _nedi a
8 VHERE product _i d=3106 and ad_i d=13001 FOR UPDATE;

7-9

Chapter 7
Unsupported Use of LOBs in SQL

9

10 dbms_l ob. trim(nclobl, ant); -- Trimthe selected lob to 10 bytes
11 END;

12/

PL/ SQL procedure successfully conpl eted.

SQ> -- Mdification to nclobl does not affect the clob in the table,
SQ> -- because nclobl is a independent tenporary LOB

SQ> sel ect dbns_| ob. getl ength(ad_sourcetext) fromPrint_nedia
2 where product _i d=3106 and ad_i d = 13001;

DBVS_LOB. GETLENGTH(AD_SOURCETEXT)

" See Also:

e "Implicit Conversions Between CLOB and VARCHARZ2" for information
on PL/SQL semantics support for implicit conversions between CLOB and
VARCHARZ types.

e "Converting Character Sets Implicitly with LOBs" for more information on
implicit character set conversions when loading LOBs from Bl LEs.

e Oracle Database SQL Language Reference for details on implicit
conversions supported for all data types.

Unsupported Use of LOBs in SQL

Table 7-2 lists SQL operations that are not supported on LOB columns.

Table 7-2 Unsupported Usage of LOBs in SQL

SQL Operations Not Supported Example of unsupported usage

SELECT DI STI NCT SELECT DI STINCT cl obCol from..

SELECT clause SELECT. .. ORDER BY cl obCol

ORDER BY

SELECT clause SELECT avg(num) FROM ..

GROUP BY GROUP BY cl obCaol

UNI ON, | NTERSECT, M NUS SELECT cl obCol 1 fromtabl UNI ON SELECT cl obCol 2 from
(Note that UNI ON ALL works for LOBS.) tabz;

Join queries SELECT... FROM .. WHERE tabl.clobCol = tab2.clobCol
Index columns CREATE | NDEX cl obl ndx ON tab(cl obCol). ..

ORACLE 7-10

Chapter 7
VARCHAR?2 and RAW Semantics for LOBs

VARCHARZ2 and RAW Semantics for LOBs

Semantics used with VARCHAR2 and RAWdata types also apply to LOBs.

About VARCHARZ2 and RAW Semantics for LOBs

These semantics, used with VARCHAR2 and RAWdata types, also apply to LOBs:

Defining a CHAR buffer on a CLOB

You can define a VARCHAR?2 for a CLOB and RAWfor a BLOB column. You can also
define CLOB and BLOB types for VARCHAR2 and RAWcolumns.

Selecting a CLOB column into a CHAR buffer or VARCHAR2

If a CLOB column is selected into a VARCHAR? variable, then data stored in the CLOB
column is retrieved and put into the CHAR buffer. If the buffer is not large enough to
contain all the CLOB data, then a truncation error is thrown and no data is written to
the buffer. After successful completion of the SELECT operation, the VARCHAR2
variable holds as a regular character buffer.

In contrast, when a CLOB column is selected into a local CLOB variable, the CLOB
locator is fetched.

Selecting a BLOB column into a RAW

When a BLOB column is selected into a RAWvariable, the BLOB data is copied into
the RAWbuffer. If the size of the BLOB exceeds the size of the buffer, then a
truncation error is thrown and no data is written to the buffer.

LOBs Returned from SQL Functions

When a LOB is returned from a SQL function, the result returned is a temporary LOB.

Your application should view the temporary LOB as local storage for the data returned
from the SELECT operation as follows:

ORACLE

In PL/SQL, the temporary LOB has the same lifetime (duration) as other local
PL/SQL program variables. It can be passed to subsequent SQL or PL/SQL
VARCHAR? functions or queries as a PL/SQL local variable. The temporary LOB
goes out of scope at the end of the program block at which time, the LOB is freed.
These are the same semantics as those for PL/SQL VARCHAR?2 variables. At any
time, nonetheless, you can use a DBVS_LOB. FREETEMPORARY() call to release the
resources taken by the local temporary LOBs.

Note:

If the SQL statement returns a LOB or a LOB is an QUT parameter for a
PL/SQL function or procedure, you must test if it is a temporary LOB,
and if it is, then free it after you are done with it.

In OCI, the temporary LOBs returned from SQL queries are always in session
duration, unless a user-defined duration is present, in which case, the temporary
LOBs are in the user-defined duration.

7-11

Chapter 7
VARCHAR?2 and RAW Semantics for LOBs

WARNING:

Ensure that your temporary tablespace is large enough to store all
temporary LOB results returned from queries in your program(s).

The following example illustrates selecting out a CLOB column into a VARCHAR2 and
returning the result as a CHAR buffer of declared size:

DECLARE
vcl VARCHAR2(32000);
I bl CLOB;
| b2 CLOB;
BEG N
SELECT cl obCol 1 | NTO vcl FROM tab WHERE col | D=1;
- Iblis a tenporary LOB
SELECT cl obCol 2 || clobCol 3 INTO I bl FROMtab WHERE col | D=2;

[b2 :=vcl|| Ibi;

- Ib2 is astill tenporary LOB, so the persistent data in the database
- is not nodified. An update is necessary to nodify the table data.
UPDATE tab SET clobCol 1 = | b2 WHERE col ID = 1;

DBMS_LOB. FREETEMPORARY(1 b2); -- Free up the space taken by |b2

<... SOme nore queries ...>

END; -- at the end of the block, Ibl is automatically freed

IS NULL and IS NOT NULL Usage with VARCHARZ2s and CLOBs

You can use the S NULL and I S NOT NULL operators with LOB columns.

When used with LOBs, the | S NULL and | S NOT NULL operators determine whether a
LOB locator is stored in the row.

Note:

In the SQL 92 standard, a character string of length zero is distinct from a
NULL string. The return value of IS NULL differs when you pass a LOB
compared to a VARCHAR2:

* When you pass an initialized LOB of length zero to the | S NULL function,
zero (FALSE) is returned. These semantics are compliant with the SQL
standard.

* When you pass a VARCHAR2 of length zero to the | S NULL function, TRUE
is returned.

WHERE Clause Usage with LOBs

SQL functions with LOBs as arguments, except functions that compare LOB values,
are allowed in predicates of the WHERE clause.

ORACLE 7-12

Chapter 7
Built-in Functions for Remote LOBs and BFILES

The LENGTH function, for example, can be included in the predicate of the WHERE
clause:

CREATE TABLE t (n NUMBER, c CLOB);
I NSERT INTO t VALUES (1, "abc');

SELECT * FROMt WHERE ¢ IS NOT NULL,

SELECT * FROM't WHERE LENGTH(c) > 0;

SELECT * FROMt WHERE c LIKE ' %% ;

SELECT * FROMt WHERE SUBSTR(c, 1, 2) LIKE '%%;
SELECT * FROM't WHERE INSTR(c, 'b') = 2;

Built-in Functions for Remote LOBs and BFILES

ORACLE

¢ See Also:

Built-in Functions for Remote LOBs and BFILEs for more information about
built-in functions and user-defined functions supported on remote LOBs and
BFI LEs

7-13

PL/SQL Semantics for LOBs

Topics:

e PL/SQL Statements and Variables

e Implicit Conversions Between CLOB and VARCHAR?2
e Explicit Conversion Functions

e PL/SQL Functions for Remote LOBs and BFILEs

PL/SQL Statements and Variables

In PL/SQL, semantic changes have been made.

Note:

Most discussions concerning PL/SQL semantics, and CLOBs and VARCHAR?s,
also apply to BLOBs and RAWS, unless otherwise noted. In the text, BLOB and
RAWare not explicitly mentioned.

PL/SQL semantics support is described in the following sections:
e Implicit Conversions Between CLOB and VARCHAR2

e Explicit Conversion Functions

e VARCHARZ2 and CLOB in PL/SQL Built-In Functions

Implicit Conversions Between CLOB and VARCHAR?2

Implicit conversions from CLOB to VARCHAR2 and from VARCHAR2 to CLOB data types are

ORACLE

allowed in PL/SQL.

These conversions enable you to perform the following operations in your application:

e CLOB columns can be selected into VARCHAR2 PL/SQL variables
e VARCHAR2 columns can be selected into CLOB variables

* Assignment and parameter passing between CLOBs and VARCHAR2s

Accessing a CLOB as a VARCHAR2 in PL/ISQL

The following example illustrates the way CLOB data is accessed when the CLOBs are

treated as VARCHARZs:

decl are
my St or yBuf VARCHAR2(4001) ;
BEG N

8-1

Chapter 8
Explicit Data Type Conversion Functions

SELECT ad_sourcetext | NTO myStoryBuf FROM print_nedia WHERE ad_id = 12001,
- Display Story by printing nyStoryBuf directly

END;

/

Assigning a CLOB to a VARCHAR2 in PL/SQL

declare
nyLOB CLOB;
BEG N
SELECT ' ABCDE' | NTO nyLOB FROM print_nedia WHERE ad_id = 11001;
- nyLOB is a tenporary LOB.
- Use nyLOB as a | ob | ocator
DBMS_OUTPUT. PUT_LINE(' I's tenp? ' || DBMS_LOB. | STEMPORARY(nyLOB)) ;
END,
/

Explicit Data Type Conversion Functions

In SQL and PL/SQL, these explicit conversion functions convert other data types to
and from CLOB, NCLOB, and BLOB :

* TO_CLOB(): Converts from VARCHAR2, NVARCHAR2, or NCLOB to a CLOB
e TO_NCLOB(): Converts from VARCHAR2, NVARCHAR2, or CLOB to an NCLOB

e TO BLOB(varchar|clob, destcsid,[mme_type]): Converts the object from its
current character set to the given character set in dest csi d. The resultant object is
BLOB. Following are various ways in which you can use the conversion function:

— TO_BLOB(character, destcsid)

— TOBLOB(character, destcsid, mme_type)
— TO BLOB(clob, destcsid)

— TOBLOB(clob, destcsid, nmine_type)

If the dest csi d is 0, then it will convert to the database character set ID. The
parameter ni ne_t ype is applicable only for | NSERT and UPDATE statements on
Secure File LOB columns. If m me_t ype is used in SELECT statement or in temporary
or basicfile LOBs, it will be ignored.

e TO BLOB(var char): Converts the input to RAWbefore converting to BLOB. In other
words, TO BLOB(HEXTORAW var char)) and TO BLOB(var char) are equivalent.

¢ Note:
TO BLOB(cl ob) is not supported.

* TO CHAR(): Converts a CLOB to a CHAR type. When you use this function to convert
a character LOB into the database character set, if the LOB value to be converted
is larger than the target type, then the database returns an error. Implicit
conversions also raise an error if the LOB data does not fit.

* TO_NCHAR() : Converts an NCLOB to an NCHAR type. When you use this function to
convert a character LOB into the national character set, if the LOB value to be
converted is larger than the target type, then the database returns an error. Implicit
conversions also raise an error if the LOB data does not fit.

ORACLE 8-2

Chapter 8
Explicit Data Type Conversion Functions

e CAST does not directly support any of the LOB data types. When you use CAST to
convert a CLOB value into a character data type, an NCLOB value into a national
character data type, or a BLOB value into a RAWdata type, the database implicitly
converts the LOB value to character or raw data and then explicitly casts the
resulting value into the target data type. If the resulting value is larger than the
target type, then the database returns an error.

Other explicit conversion functions are not supported, such as, TO NUMBER() , see
Table 7-1.

" Note:
LOBs do not support duplicate LONG binds.

¢ See Also:

Migrating Columns from LONGs to LOBs for more information about
conversion functions

VARCHARZ2 and CLOB in PL/SQL Built-In Functions

ORACLE

CLOB and VARCHAR? are two distinct types.

However, depending on the usage, a CLOB can be passed to SQL and PL/SQL
VARCHAR? built-in functions, used exactly like a VARCHAR2. Or the variable can be
passed into DBMS_LOB APls, acting like a LOB locator. See the following combined
example,"CLOB Variables in PL/SQL".

PL/SQL VARCHAR2 functions and operators can take CLOBs as arguments or operands.

When the size of a VARCHAR2 variable is not large enough to contain the result from a
function that returns a CLOB, or a SELECT on a CLOB column, an error is raised and no
operation is performed. This is consistent with VARCHAR2 semantics.

CLOB Variables in PL/ISQL

1 declare

2 nyStory CLOB;

3 revisedStory CLOB;

4 nyG st VARCHAR2(100);

5 revisedG st VARCHAR2(100);

6 BEG N

7 -- select a CLOB colum into a CLOB variable

8 SELECT Story INTO myStory FROM print_nedi a WHERE product _i d=10;
9 -- perform VARCHAR2 operations on a CLOB variable

10 revisedStory := UPPER(SUBSTR(nyStory, 100, 1));

11 -- revisedStory is a temporary LOB

12 -- Concat a VARCHAR2 at the end of a CLOB

13 revisedStory := revisedStory || nyG st;

14 -- The following statenment raises an error because nyStory is
15 -- longer than 100 bytes

16 nyGst := nyStory;

17 END;

8-3

ORACLE

Chapter 8
Explicit Data Type Conversion Functions

Please note that in line 10 of "CLOB Variables in PL/SQL", a temporary CLOB is
implicitly created and is pointed to by the revi sedSt ory CLOB locator. In the current
interface the line can be expanded as:

buf fer VARCHAR2(32000)

DBMS_LOB. CREATETEMPORARY(r evi sedSt ory) ;

buf fer := UPPER(DBMS_LOB. SUBSTR(nySt ory, 100, 1));
DBMS_LOB. Rl TE(r evi sedStory, | engt h(buffer), 1, buffer);

In line 13, myG st is appended to the end of the temporary LOB, which has the same
effect of:

DBMS_LOB. V\RI TEAPPEND(r evi sedStory, nyG st, |ength(nyGst));

In some occasions, implicitly created temporary LOBs in PL/SQL statements can
change the representation of LOB locators previously defined. Consider the next
example.

Change in Locator-Data Linkage

1 declare

2 nyStory CLOB;

3 ant nunber: =100;

4 buffer VARCHAR2(100):='sone data';

5 BEG N

6 -- select a CLOB colum into a CLOB variable

7 SELECT Story INTO nyStory FROM print_medi a WHERE product _i d=10;
8 DBVS_LOB.WRI TE(nyStory, ant, 1, buf);

9 -- wite to the persistent LOB in the table

10

11 nyStory: = UPPER(SUBSTR(nmyStory, 100, 1));

12 -- perform VARCHAR2 operations on a CLOB variable, temporary LOB created.
13 -- Changes are not reflected in the database table fromthis point on.
14

15 update print_nmedia set Story = nyStory WHERE product _id = 10;

16 -- an update is necessary to synchronize the data in the table.

17 END;

After line 7, nySt ory represents a persistent LOB in print _medi a.
The DBMS_LOB. VRI TE call in line 8 directly writes the data to the table.

No UPDATE statement is hecessary. Subsequently in line 11, a temporary LOB is
created and assigned to nySt ory because nySt ory is now used like a local VARCHAR2
variable. The LOB locator nySt ory now points to the newly-created temporary LOB.

Therefore, modifications to nySt ory are no longer reflected in the database. To
propagate the changes to the database table, an UPDATE statement becomes
necessary now. Note again that for the previous persistent LOB, the UPDATE is not
required.

¢ Note:

If the SQL statement returns a LOB or a LOB is an OUT parameter for a
PL/SQL function or procedure, you must test if it is a temporary LOB, and if it
is, then free it after you are done with it.

8-4

Chapter 8
PL/SQL Functions for Remote LOBs and BFILES

Freeing Temporary LOBs Automatically and Manually

Temporary LOBs created in a program block as a result of a SELECT or an assignment
are freed automatically at the end of the PL/SQL block or function or procedure. You
must also free the temporary LOBs that were created with DBVS_LOB. CREATETEMPORARY
to reclaim system resources and temporary tablespace. Do this by calling

DBMS_LOB. FREETEMPORARY on the CLOB variable.

declare
Storyl CLOB;
Story2 CLOB;
St or yConbi ned CLOB;
StoryLower CLOB;

BEG N
SELECT Story INTO Storyl FROM print_nedi a WHERE product _ID = 1;
SELECT Story INTO Story2 FROM print_nedi a WHERE product _ID = 2;
StoryConbined := Storyl || Story2; -- StoryConmbined is a tenporary LOB
- Free the StoryConbined manually to free up space taken
DBVS_LOB. FREETEMPORARY(St or yConbi ned) ;
StoryLower := LOAER(Storyl) || LOAER(Story2);

END;, -- At the end of block, StoryLower is freed.

PL/SQL Functions for Remote LOBs and BFILES

ORACLE

See Also:

PL/SQL Functions for Remote LOBs and BFILEs for PL/SQL functions that
support remote LOBs and BFI LEs

8-5

Data Interface for Persistent LOBs

Data interface is a generic term referring to whichever interface is in use, to query the
database or to update the database.

Topics:

* Overview of the Data Interface for Persistent LOBs

* Benefits of Using the Data Interface for Persistent LOBs
e Using the Data Interface for Persistent LOBs in PL/SQL
* The Data Interface Used for Persistent LOBs in OCI

e The Data Interface Used with Persistent LOBs in Java

e The Data Interface Used with Remote LOBs

Overview of the Data Interface for Persistent LOBS

The data interface for persistent LOBs includes a set of Java, PL/SQL, and OCI APIs
that are extended to work with LOB data types.

These APIs, originally designed for use with legacy data types such as LONG, LONG RAW
and VARCHAR2, can also be used with the corresponding LOB data types shown in
Table 9-1 and Table 9-2. These tables show the legacy data types in the bind or define
type column and the corresponding supported LOB data type in the LOB column type
column. You can use the data interface for LOBs to store and manipulate character
data and binary data in a LOB column just as if it were stored in the corresponding
legacy data type. The data interface supports data size up to 2 GB - 1, the maximum
size of an sb4 data type.

¢ Note:

The data interface works for LOB columns and LOBs that are attributes of
objects. In this chapter LOB columns means LOB columns and LOB
attributes.

You can use array bind and define interfaces to insert and select multiple
rows in one round-trip.

While most of this discussion focuses on character data types, the same concepts
apply to the full set of character and binary data types listed in Table 9-1 and
Table 9-2. CLOB also means NCLOB in these tables.

ORACLE 9-1

Chapter 9
Benefits of Using the Data Interface for Persistent LOBs

Table 9-1 Corresponding LONG and LOB Data Types in SQL and PL/SQL
|

Bind or Define Type

LOB Column Type Used For Storing

CHAR CLOB Character data
LONG CLOB Character data
VARCHAR2 CLOB Character data
LONG RAW BLOB Binary data
RAW BLOB Binary data

Table 9-2 Corresponding LONG and LOB Data Types in OCI
|

Bind or Define Type

LOB Column Type Used For Storing

SQLT_AFC(n) CLOB Character data
SQLT_CHR CLOB Character data
SQLT_LNG CLOB Character data
SQLT_VCS CLOB Character data
SQLT BI'N BLOB Binary data
SQ.T_LBI BLOB Binary data
SQ.T_LVB BLOB Binary data

Benefits of Using the Data Interface for Persistent LOBs

Using the data interface for persistent LOBs has the following benefits:

ORACLE

If your application uses LONG data types, then you can use the same application
with LOB data types with little or no modification of your existing application
required. To do so, just convert LONG audiotape columns in your tables to LOB
audiotape columns as discussed in Migrating Columns from LONGs to LOBs.

Performance is better for OCI applications that use sequential access techniques.
A piecewise | NSERT or fetch using the data interface has comparable performance
to using OCI functions like OCl LobRead2() and OCl LobW it e2() . Because the data
interface allows more than 4K bytes of data to be inserted into a LOB in a single
OCI call, a round-trip to the server is saved.

You can read LOB data in one OCl St nt Fet ch() call, instead of fetching the LOB
locator first and then calling OCl LobRead?2() . This improves performance when you
want to read LOB data starting at the beginning.

You can use array bind and define interfaces to insert and select multiple rows
with LOBSs in one round trip. Irrespective of whether the LOB data is inserted or
fetched using single piece, piecewise or callbacks, it is inserted or fetched in a
single round trip for multiple rows when using array binds or defines.

9-2

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

Using the Data Interface for Persistent LOBs in PL/SQL

The data interface enables you to use LONGand LOB data types listed in #unique_194/
unique_194 Connect_42 91020364 to perform the following operations in PL/SQL.:

About Using the Data Interface for Persistent LOBs in PL/SQL

ORACLE

| NSERT or UPDATE character data stored in datatypes such as VARCHAR2, CHAR, or
LONGinto a CLOB column.

| NSERT or UPDATE binary data stored in datatypes such as RAWor LONG RAWInto a
BLOB column.

Use the SELECT statement on CLOB columns to select data into a character buffer
variable such as CHAR, LONG, or VARCHAR?.

Use the SELECT statement on BLOB columns to select data into a binary buffer
variable such as RAWand LONG RAW

Make cross-type assignments (implicit type conversions) between CLOB and
VARCHAR2, CHAR, or LONG variables.

Make cross-type assignments (implicit type conversions) between BLOB and RAWor
LONG RAWvariables.

Pass LOB datatypes to functions defined to accept LONG datatypes or pass LONG
datatypes to functions defined to accept LOB datatypes. For example, you can
pass a CLOB instance to a function defined to accept another character type, such
as VARCHAR2, CHAR, or LONG.

Use CLOBs with other PL/SQL functions and operators that accept VARCHAR2
arguments such as | NSTR and SUBSTR.

< Note:

When using the data interface for LOBs with the SELECT statement in PL/
SQL, you cannot specify the amount you want to read. You can only
specify the buffer length of your buffer. If your buffer length is smaller
than the LOB data length, then the database throws an exception.

¢ See Also:

— SQL Semantics and LOBs for details on LOB support in SQL
statements

— Some Implicit Conversions Are Not Supported for LOB Data Types

— Passing CLOBs to SQL and PL/SQL Built-In Functions for the
complete list of functions that accept VARCHAR2 arguments such as
I NSTR and SUBSTR

9-3

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

Guidelines for Accessing LOB Columns Using the Data Interface in
SQL and PL/SQL

This section describes techniques you use to access LOB columns or attributes using
the data interface for persistent LOBs.

Data from CLOB and BLOB columns or attributes can be referenced by regular SQL
statements, such as | NSERT, UPDATE, and SELECT.

There is no piecewise | NSERT, UPDATE, or fetch routine in PL/SQL. Therefore, the
amount of data that can be accessed from a LOB column or attribute is limited by the
maximum character buffer size. PL/SQL supports character buffer sizes up to 32KB - 1
(32767 bytes). For this reason, only LOBs less than 32K bytes in size can be
accessed by PL/SQL applications using the data interface for persistent LOBs.

If you must access more than 32KB -1 using the data interface, then you must make
OCI calls from the PL/SQL code to use the APIs for piece-wise insert and fetch.

Use the following guidelines for using the data interface to access LOB columns or
attributes:

* | NSERT operations

You can | NSERT into tables containing LOB columns or attributes using regular
| NSERT statements in the VALUES clause. The field of the LOB column can be a
literal, a character datatype, a binary datatype, or a LOB locator.

* UPDATE operations

LOB columns or attributes can be updated as a whole by UPDATE... SET
statements. In the SET clause, the new value can be a literal, a character datatype,
a binary datatype, or a LOB locator.

e 4000 byte limit on hexadecimal to raw and raw to hexadecimal conversions

The database does not do implicit hexadecimal to RAWor RAWto hexadecimal
conversions on data that is more than 4000 bytes in size. You cannot bind a buffer
of character data to a binary datatype column, and you cannot bind a buffer of
binary data to a character datatype column if the buffer is over 4000 bytes in size.
Attempting to do so results in your column data being truncated at 4000 bytes.

For example, you cannot bind a VARCHAR2 buffer to a LONG RAWor a BLOB column if
the buffer is more than 4000 bytes in size. Similarly, you cannot bind a RAWbuffer
to a LONG or a CLOB column if the buffer is more than 4000 bytes in size.

e SELECT operations

LOB columns or attributes can be selected into character or binary buffers in PL/
SQL. If the LOB column or attribute is longer than the buffer size, then an
exception is raised without filling the buffer with any data. LOB columns or
attributes can also be selected into LOB locators.

* The Data interface only supports data size upto 2GB - 1, the maximum size of sh4
data type.

Implicit Assignment and Parameter Passing

Implicit assignment and parameter passing are supported for LOB columns.

ORACLE 9-4

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

For the data types listed in Table 9-1 and Table 9-2, you can pass or assign: any
character type to any other character type, or any binary type to any other binary type
using the data interface for persistent LOBs.

Implicit assignment works for variables declared explicitly and for variables declared
by referencing an existing column type using the % YPE attribute as show in the
following example. This example assumes that column | ong_col in table t has been
migrated from a LONGto a CLOB column.

CREATE TABLE t (long_col LONG; -- Alter this table to change LONG colum to LOB
DECLARE

a VARCHAR2(100) ;

b t.long_col %ype; -- This variable changes from LONG to CLOB

BEG N
SELECT * INTO b FROM t;
a:=Db; -- This changes from"VARCHAR2 := LONG to VARCHAR2 : = CLOB
b :=a -- This changes from"LONG := VARCHAR2 to CLOB : = VARCHAR2
END;

Implicit parameter passing is allowed between functions and procedures. For example,
you can pass a CLOB to a function or procedure where the formal parameter is defined
as a VARCHAR?.

Passing CLOBs to SQL and PL/SQL Built-In Functions

Implicit parameter passing is also supported for built-in PL/SQL functions that accept
character data. For example, | NSTR can accept a CLOB and other character data.

Any SQL or PL/SQL built-in function that accepts a VARCHAR2 can accept a CLOB as an
argument. Similarly, a VARCHAR2 variable can be passed to any DBMS_LOB API for any
parameter that takes a LOB locator.

¢ See Also:
SQL Semantics and LOBs

Explicit Data Type Conversion

Explicit conversion functions convert a value from other datatypes to and from CLOB,
NCLOB and BLOB datatypes.

¢ See Also:

To explicitly convert LOB datatypes to scalar datatypes, please see Explicit
Data Type Conversion Functions

Calling PL/SQL and C Procedures from SQL

When a PL/SQL or C procedure is called from SQL, buffers with more than 4000 bytes
of data are not allowed.

ORACLE 9-5

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

Calling PL/SQL and C Procedures from PL/SQL

You can call a PL/SQL or C procedure from PL/SQL. You can pass a CLOB as an
actual parameter where CHR is the formal parameter, or vice versa. The same holds for
BLOBs and RAW.

One example of when these cases can arise is when either the formal or the actual
parameter is an anchored type, that is, the variable is declared using the
t abl e_nane. col utm_nane% ype syntax.

PL/SQL procedures or functions can accept a CLOB or a VARCHAR? as a formal
parameter. For example the PL/SQL procedure could be one of the following:

* When the formal parameter is a CLOB:

CREATE OR REPLACE PROCEDURE get | ob(tabl e_name I N VARCHAR2, |ob | NOUT
CLOB) AS
BEG N
END;
/
e When the formal parameter is a VARCHARZ:

CREATE OR REPLACE PROCEDURE get | ob(tabl e_nane IN VARCHAR2, |ob | NOUT
VARCHAR?) AS

BEG N

END;
/

The calling function could be of any of the following types:

* When the actual parameter is a CHR:

create procedure ...
declare
¢ VARCHAR2[200] ;
BEG N

get _| ob('table_nanme', c);
END;

* When the actual parameter is a CLOB:

create procedure ...
decl are
¢ CLCB;
BEG N
get _|ob('table_nane', c);
END;

Binds of All Sizes in INSERT and UPDATE Operations

Binds of all sizes are supported for | NSERT and UPDATE operations on LOB columns.
Multiple binds of any size are allowed in a single | NSERT or UPDATE statement.

ORACLE 9-6

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

< Note:

When you create a table, the length of the default value you specify for any
LOB column is restricted to 4000 bytes.

4000 Byte Limit on Results of a SQL Operator

If you bind more than 4000 bytes of data to a BLOB or a CLOB, and the data consists of
a SQL operator, then Oracle Database limits the size of the result to at most 4000
bytes.

The following statement inserts only 4000 bytes because the result of LPAD is limited to
4000 bytes:

I NSERT | NTO print_nedia (ad_sourcetext) VALUES (lpad('a', 5000, 'a'));

The following statement inserts only 2000 bytes because the result of LPAD is limited to
4000 bytes, and the implicit hexadecimal to raw conversion converts it to 2000 bytes of
RAWdata:

I NSERT | NTO print_nedia (ad_photo) VALUES (lpad('a', 5000, 'a'));

Example of 4000 Byte Result Limit of a SQL Operator

This example illustrates how the result for SQL operators is limited to 4000 bytes.

[* The foll owing command inserts only 4000 bytes because the result of
* LPAD is linited to 4000 bytes */
I NSERT | NTO print_medi a(product _id, ad_id, ad_sourcetext)
VALUES (2004, 5, Ipad('a', 5000, 'a'));
SELECT LENGTH(ad_sourcetext) FROM print_nedia
VHERE product _i d=2004 AND ad_i d=5;
ROLLBACK;

[* The fol |l owing command inserts only 2000 bytes because the result of
* LPAD is linited to 4000 bytes, and the inplicit hex to raw conversion
* converts it to 2000 bytes of RAWdata. */
I NSERT | NTO print_medi a(product _id, ad_id, ad_conposite)
VALUES (2004, 5, Ipad('a', 5000, 'a'));
SELECT LENGTH(ad_conposite) from print_nedia
VHERE product _i d=2004 AND ad_i d=5;
ROLLBAACK;

Restrictions on Binds of More Than 4000 Bytes

ORACLE

There are restrictions for binds of more than 4000 bytes:

* If a table has both LONGand LOB columns, then you can bind more than 4000
bytes of data to either the LONG or LOB columns, but not both in the same
statement.

e Inan | NSERT AS SELECT operation, binding of any length data to LOB columns is
not allowed.

9-7

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

Example: PL/SQL - Using Binds of More Than 4000 Bytes in INSERT
and UPDATE

This example demonstrates using binds larger than 4000 bytes in | NSERT and UPDATE
operations.

DECLARE
bi gt ext VARCHAR2(32767);
smal | text VARCHAR2(2000);
bi graw RAW (32767);

BEG N
bigtext := LPAD('a', 32767, 'a');
smal I text := LPAD('a', 2000, 'a');
bigraw := utl_raw cast_to_raw (bigtext);

/* Miltiple long binds for LOB colums are allowed for |INSERT: */
I NSERT | NTO print_medi a(product _id, ad_id, ad_sourcetext, ad_conposite)
VALUES (2004, 1, bigtext, bigraw;

/* Single long bind for LOB colums is allowed for |NSERT: */
I NSERT | NTO print_media (product_id, ad_id, ad_sourcetext)
VALUES (2005, 2, smalltext);

bigtext := LPAD('b', 32767, 'b');
smal I text := LPAD('b', 20, 'a');
bigraw := utl_raw cast_to_raw (bigtext);

/* Miltiple long binds for LOB colums are allowed for UPDATE: */
UPDATE print_nedia SET ad_sourcetext = bigtext, ad_conposite = bigraw,
ad_finaltext = smalltext;

/* Single long bind for LOB colums is allowed for UPDATE: */
UPDATE print_nedia SET ad_sourcetext = smalltext, ad_finaltext = bigtext;

/* The following is NOT allowed because we are trying to insert nmore than
4000 bytes of data in a LONG and a LOB col um: */

I NSERT | NTO print_medi a(product _id, ad_id, ad_sourcetext, press_release)
VALUES (2030, 3, bigtext, bigtext);

I* Insert of data into LOB attribute is allowed */

I NSERT | NTO print_medi a(product _id, ad_id, ad_header)
VALUES (2049, 4, adheader_typ(null, null, null, bigraw);

I* The following is not allowed because we try to perform | NSERT AS
SELECT data | NTO LOB */

I NSERT | NTO print_medi a(product _id, ad_id, ad_sourcetext)
SELECT 2056, 5, bigtext FROM dual;

END;
/

Using the Data Interface for LOBs with INSERT, UPDATE, and
SELECT Operations

| NSERT and UPDATE statements on LOBs are used in the same way as on LONGs. For
example:

ORACLE 9-8

Chapter 9
Using the Data Interface for Persistent LOBs in PL/SQL

DECLARE
ad_buffer VARCHAR2(100);
BEG N
I NSERT | NTO print_medi a(product _id, ad_id, ad_sourcetext)
VALUES(2004, 5, 'Source for advertisenment 1');
UPDATE print_nmedia SET ad_sourcetext="'Source for advertisenent 2'
VHERE product _i d=2004 AND ad_i d=5;
[* This retrieves the LOB colum if it is up to 100 bytes, otherwise it
* raises an exception */
SELECT ad_sourcetext INTO ad_buffer FROM print_media
VHERE product _i d=2004 AND ad_i d=5;
END;
/

Using the Data Interface for LOBs in Assignments and Parameter

Passing

ORACLE

The data interface for LOBs enables implicit assignment and parameter passing as
shown in the following example:

CREATE TABLE t (clob_col CLOB, blob_col BLOB);
INSERT INTO t VALUES(' abcdefg', 'aaaaaa');

DECLARE
var _buf VARCHAR2(100);
cl ob_buf CLOB;
raw_buf RAW100);
bl ob_buf BLOB;
BEG N
SELECT * INTO cl ob_buf, blob_buf FROMt;
var_buf := clob_buf;
clob_buf: = var_buf;
raw_buf := bl ob_buf;
bl ob_buf := raw buf;
END;

/

CREATE OR REPLACE PROCEDURE FOO (a IN QUT CLOB) IS

BEG N
- Any procedure body
a .= 'abc';

END;

/

CREATE OR REPLACE PROCEDURE BAR (b IN OUT VARCHAR2) IS
BEG N
- Any procedure body
b :="xyz';
END;
/

DECLARE
a VARCHAR2(100) := '1234567";
b CLOB;
BEG N
FOX(a);
SELECT clob_col INTOb FROMt;

BAR(b) ;

9-9

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

END;

Using the Data Interface for LOBs with PL/SQL Built-In Functions

This example illustrates the use of CLOBs in PL/SQL built-in functions, using the data
interface for LOBs:

DECLARE
my_ad CLOB;
revi sed_ad CLOB;
myG st VARCHAR2(100):= '"This is ny gist.";
revi sedG st VARCHAR2(100);
BEG N
I NSERT | NTO print_media (product_id, ad_id, ad_sourcetext)
VALUES (2004, 5, 'Source for advertisenent 1');

- select a CLOB colum into a CLOB variable
SELECT ad_sourcetext INTO ny_ad FROM print_nedia
VWHERE product _i d=2004 AND ad_i d=5;

- perform VARCHAR2 operations on a CLOB variable
revised_ad := UPPER(SUBSTR(my_ad, 1, 20));

- revised_ad is a tenporary LOB
- Concat a VARCHAR2 at the end of a CLOB
revised_ad := revised_ad || nyGst;

- The following statement raises an error if ny_adis
- longer than 100 bytes
nmyG st := ny_ad;
END;
/

The Data Interface Used for Persistent LOBs in OCI

This section discusses OCI functions included in the data interface for persistent
LOBs. These OCI functions work for LOB datatypes exactly the same way as they do
for LONG datatypes. Using these functions, you can perform | NSERT, UPDATE, fetch,
bind, and define operations in OCI on LOBs using the same techniques you would use
on other datatypes that store character or binary data.

Note:

You can use array bind and define interfaces to insert and select multiple
rows with LOBSs in one round trip.

¢ See Also:

Oracle Call Interface Programmer's Guide, section "Runtime Data Allocation
and Piecewise Operations in OCI"

ORACLE 9-10

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

LOB Data Types Bound in OCI

You can bind LOB datatypes in the following operations:

* Regular, piecewise, and callback binds for | NSERT and UPDATE operations
* Array binds for | NSERT and UPDATE operations

e Parameter passing across PL/SQL and OCI boundaries

Piecewise operations can be performed by polling or by providing a callback. To
support these operations, the following OCI functions accept the LONGand LOB data
types listed in Table 9-2.

e (OCl Bi ndByNane() and COCl Bi ndByPos()

These functions create an association between a program variable and a
placeholder in the SQL statement or a PL/SQL block for | NSERT and UPDATE
operations.

e (OCl Bi ndDynami c()

You use this call to register callbacks for dynamic data allocation for | NSERT and
UPDATE operations

e (OCI StntGetPiecelnfo() and OCl St nt Set Pi ecel nfo()

These calls are used to get or set piece information for piecewise operations.

LOB Data Types Defined in OCI

The data interface for persistent LOBs allows the following OCI functions to accept the
LONG and LOB data types listed in #unique_194/
unique_194 Connect_42_g1020324.

e (OCl DefineByPos()
This call associates an item in a SELECT list with the type and output data buffer.
e OCl Definebynam c()

This call registers user callbacks for SELECT operations if the OCl _DYNAM C_FETCH
mode was selected in OCl Def i neByPos() function call.

When you use these functions with LOB types, the LOB data, and not the locator, is
selected into your buffer. Note that in OCI, you cannot specify the amount you want to
read using the data interface for LOBs. You can only specify the buffer length of your
buffer. The database only reads whatever amount fits into your buffer and the data is
truncated.

Multibyte Character Sets Used in OCI with the Data Interface for LOBs

ORACLE

When the client character set is in a multibyte format, functions included in the data
interface operate the same way with LOB datatypes as they do for LONG datatypes as
follows:

« For a piecewise fetch in a multibyte character set, a multibyte character could be
cut in the middle, with some bytes at the end of one buffer and remaining bytes in
the next buffer.

9-11

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

» For a regular fetch, if the buffer cannot hold all bytes of the last character, then
Oracle returns as many bytes as fit into the buffer, hence returning partial
characters.

Getting LOB Length

This section describes how an OCI application can fetch LOB length.

To fetch LOB data length, use OCI function OCl Ser ver Dat aLengt hGet (). When a LOB
column is accessed using the Data Interface, the server sends the LOB data length
followed by LOB data. It is the length of LOB data before any conversions are made.
The OCI client stores the retrieved LOB length in define handle. The application can
use OCl Server Dat aLengt hGet () to access the LOB length.

You can access LOB length in all fetch modes, ie single piece, piecewise and callback.
You can also access it inside the callback without incurring a roundtrip to the server.
However, you should not use it before fetch operation. In case of piecewise or callback
operations, you should use it right after the first piece is fetched.

OCI Functions Used to Perform INSERT or UPDATE on LOB Columns

This section discusses the various technigues you can use to perform | NSERT or
UPDATE operations on LOB columns or attributes using the data interface. The
operations described in this section assume that you have initialized the OCI
environment and allocated all necessary handles.

Performing Simple INSERTs or UPDATES in One Piece

To perform simple | NSERT or UPDATE operations in one piece using the data interface
for persistent LOBs, perform the following steps:

1. Call OC St nt Prepare() to prepare the statement in OCI _DEFAULT mode.

2. Call OCl Bi ndByNane() or OCl Bi ndbyPos() in OCl _DEFAULT mode to bind a
placeholder for LOB as character data or binary data.

3. Call OCl St nt Execut e() to do the actual | NSERT or UPDATE operation.

Using Piecewise INSERTs and UPDATEs with Polling

ORACLE

To perform piecewise | NSERT or UPDATE operations with polling using the data interface
for persistent LOBs, do the following steps:

1. Call OCl St nt Prepare() to prepare the statement in OCI _DEFAULT mode.

2. Call OCl Bi ndByNane() or OCl Bi ndbyPos() in OCl _DATA AT _EXEC mode to bind a
LOB as character data or binary data.

3. Call O St nt Execut e() in default mode. Do each of the following in a loop while
the value returned from OCl St nt Execut e() is OCl _NEED DATA. Terminate your loop
when the value returned from OCl St nt Execut e() is OCl _SUCCESS.

e Call OC St nt Get Pi ecel nfo() to retrieve information about the piece to be
inserted.

e Call OC Stnt Set Pi ecel nfo() to set information about piece to be inserted.

9-12

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

Performing Piecewise INSERTs and UPDATEs with Callback

To perform piecewise | NSERT or UPDATE operations with callback using the data
interface for persistent LOBs, do the following steps:

1. Call OC St nt Prepare() to prepare the statement in OCI _DEFAULT mode.

2. Call OCl Bi ndByNane() or OCl Bi ndbyPos() in OCl _DATA AT _EXEC mode to bind a
placeholder for the LOB column as character data or binary data.

3. Call OCl Bi ndDynani c() to specify the callback.
4. Call OCl St nt Execut e() in default mode.

For pure IN binds in OCI to SQL/PLSQL, there is no need to supply an output callback.
Starting from Oracle Database 20c Release, for pure OUT binds in OCI to SQL/
PLSQL, there is no need to supply an input callback.

Array INSERT and UPDATE Operations

To perform array | NSERT or UPDATE operations using the data interface for persistent
LOBs, use any of the techniques discussed in this section in conjunction with

COCl Bi ndArrayOf Struct (), or by specifying the number of iterations (i ter), with i ter
value greater than 1, in the OCl St nt Execut e() call. Irrespective of whether the LOB
data is inserted using single piece, piecewise or callbacks, it is inserted in a single
round trip for multiple rows when using array binds.

The Data Interface Used to Fetch LOB Data in OCI

This section discusses techniques you can use to fetch data from LOB columns or
attributes in OCI using the data interface for persistent LOBs.

Simple Fetch in One Piece

To perform a simple fetch operation on LOBs in one piece using the data interface for
persistent LOBs, do the following:

1. Call OCl Stnt Prepare() to prepare the SELECT statement in OCl _DEFAULT mode.

2. Call OCl Def i neByPos() to define a select list position in OCl _DEFAULT mode to
define a LOB as character data or binary data.

3. Call OC St nt Execut e() to run the SELECT statement.
4. Call OC StntFetch() to do the actual fetch.

Performing a Piecewise Fetch with Polling

ORACLE

To perform a piecewise fetch operation on a LOB column with polling using the data
interface for LOBs, do the following steps:

1. Call OCl St nt Prepare() to prepare the SELECT statement in OCI _DEFAULT mode.

2. Call OCl Def i nebyPos() to define a select list position in OCI _DYNAM C_FETCH mode
to define the LOB column as character data or binary data.

3. Call OC St nt Execut e() to run the SELECT statement.

9-13

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

4. Call OCl Stnt Fet ch() in default mode. Optionally, you can use
OCl Server Dat aLengt hGet () to get the LOB length and use it to allocate the buffer
to hold the LOB data. Do each of the following in a loop while the value returned
from OCl St nt Fet ch() is OCl _NEED DATA. Terminate your loop when the value
returned from OCl St nt Fet ch() is OCl _SUCCESS.

e Call OC St nt Get Pi ecel nfo() to retrieve information about the piece to be
fetched.

e Call OC St nt Set Pi ecel nfo() to set information about piece to be fetched.

Performing a Piecewise with Callback

Array Fetch

To perform a piecewise fetch operation on a LOB column with callback using the data
interface for persistent LOBs, do the following:

1. Call OC St nt Prepare() to prepare the statement in OCI _DEFAULT mode.

2. Call OCl Defi nebyPos() to define a select list position in OCI _DYNAM C_FETCH mode
to define the LOB column as character data or binary data.

Call OCI St nt Execut e() to run the SELECT statement.
Call OCl Def i neDynani ¢() to specify the callback.
Call OCl St nt Fet ch() in default mode.

© o p w

Inside the callback, you can optionally use OCl Ser ver Dat aLengt hGet () to get the
LOB length during the first fetch. You can use this value to allocate the buffer to
hold LOB data

To perform an array fetch in OCI using the data interface for persistent LOBs, use any
of the techniques discussed in this section in conjunction with

OCl Defi neArrayO Struct (), or by specifying the number of iterations (i t er), with the
value of i t er greater than 1, in the OCl St nt Execut e() call. Irrespective of whether the
LOB data is fetched using single piece, piecewise or callbacks, it is fetched in a single
round trip for multiple rows when using array defines.

PL/SQL and C Binds from OCI

ORACLE

When you call a PL/SQL procedure from OCI, and have an | Nor OUT or I N QUT bind,
you should be able to:

e Bind a variable as SQLT_CHR or SQLT_LNGwhere the formal parameter of the
PL/SQL procedure is SQ.T_CLOB, or

e Bind a variable as SQLT_BI Nor SQLT _LBI where the formal parameter is SQLT _BLOB
The following two cases work:

Calling PL/SQL Out-binds in the "begin foo(:1); end;" Manner

Here is an example of calling PL/SQL out-binds in the "begin foo(:1); end;" Manner:

text *sqglstnmt = (text *)"BEGN get_lob(:c); END, " ;

9-14

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

Calling PL/SQL Out-binds in the "call foo(:1);" Manner
Here is an example of calling PL/SQL out-binds in the "call foo(:1);" manner:

text *sglstmt = (text *)"CALL get_lob(:c);" ;

In both these cases, the rest of the program has these statements:

OCl Stmt Prepare(stnthp, errhp, sqlstnt, (ub4)strlen((char *)sqlstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);
curlen = 0;

CCl Bi ndByNane(st nt hp, &bndhp[3], errhp,
(text *) ":c", (sb4) strlen((char *) ":c"),
(dvoid *) buf5, (sh4) LONGLEN, SQLT_CHR
(dvoid *) 0, (ub2 *) 0, (ub2 *) 0,
(ub4) 1, (ub4 *) &curlen, (ub4) OCl _DATA AT _EXEC);

The PL/SQL procedure, get | ob(), is as follows:

procedure get _|ob(c INOUT CLOB) is -- This might have been col um% ype
BEG N
. |* The procedure body could be in PL/SQ or C+/
END;

Example: C (OCIl) - Binds of More than 4000 Bytes for INSERT and
UPDATE

You can use binds of more than 4000 byes for | NSERT and UPDATE operations.

voi d insert3()

{

/* Insert of data into LOB attributes is allowed. */
ubl buffer[8000];
text *insert_sqgl = (text *)"INSERT INTO Print_nedia (ad_header) \
VALUES (adheader _typ(NULL, NULL, NULL,:1))";
OCl St nt Prepare(stnthp, errhp, insert_sql, strlen((char*)insert_sql),
(ub4) OCI _NTV_SYNTAX, (ub4) OC _DEFAULT);
OCl Bi ndByPos(st nt hp, &bindhp[0], errhp, 1, (dvoid *)buffer, 2000,
SQT_LNG 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
OCl St nt Execut e(svchp, stnthp, errhp, 1, 0, (const OCl Snapshot*) O,
(OCl Snapshot *) 0, OCl _DEFAULT);
}

Using the Data Interface for LOBs in PL/SQL Binds from OCI on LOBs

The data interface for LOBs allows LOB PL/SQL binds from OCI to work. When you
call a PL/SQL procedure from OCI, and have an | Nor OUT or I N QUT bind, you should
be able to bind a variable as SQLT_CHR, where the formal parameter of the PL/SQL
procedure is SQLT _CLCB.

" Note:

C procedures are wrapped inside a PL/SQL stub, so the OCI application
always calls the PL/SQL stub.

ORACLE 9-15

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

For the OCI calling program, the following are likely cases:

Calling PL/SQL Out-binds in the "begin foo(:1); end;" Manner

For example:

text *sglstnt = (text *)"BEGN PKGL.P5 (:c); END, " ;

Calling PL/SQL Out-binds in the "call foo(:1);" Manner

For example:

text *sqglstm = (text *)"CALL PKGL.P5(:c);" ;

In both these cases, the rest of the program is as follows:

OCl St nt Prepare(stnthp, errhp, sqlstnt, (ub4)strlen((char *)sqlstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCl _DEFAULT);
curlen = Q;

OCl Bi ndByNane(st nt hp, &bndhp[3], errhp,
(text *) ":c4", (sh4) strlen((char *) ":c"),
(dvoid *) buf5, (sh4) LONGLEN, SQLT_CHR
(dvoid *) 0, (ub2 *) 0, (ub2 *) 0,
(ub4) 1, (ub4 *) &curlen, (ub4) OCl _DATA AT EXEC);

OCl St nt Execut e(svchp, stnthp, errhp, (ub4) 0, (ub4) 0, (const OCl Snapshot*) 0,
(OCl Snapshot*) 0, (ub4) OCI _DEFAULT);

The PL/SQL procedure PKGL. P5 is as follows:

CREATE OR REPLACE PACKAGE BODY pkgl AS

procedure p5 (¢ OUT CLOB) is
- This mght have been table%owtype (so it is CLOB now)
BEG N

END p5;

END pkg1l,;

Binding LONG Data for LOB Columns in Binds Greater Than 4000
Bytes
This example illustrates binding character data for a LOB column:

voi d sinple_insert()
{
word buflen;
text buf[5000];
text *insstmt = (text *) "INSERT INTO Print_nedia(Product _id, Ad_id,\
Ad_sourcetext) VALUES (2004, 1, :SRCTXT)";

QOCl St nt Prepare(stnthp, errhp, insstnt, (ub4)strlen((char *)insstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCl DEFAULT);

QCl Bi ndByNane(st nt hp, &bndhp[0], errhp,
(text *) ":SRCTXT", (sh4) strlen((char *) ":SRCTXT"),
(dvoid *) buf, (sb4) sizeof(buf), SQT_CHR
(dvoid *) 0, (ub2 *) 0, (ub2 *) 0,

ORACLE 9-16

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

(ub4) 0, (ub4 *) 0, (ub4) OO _DEFAULT);

menset ((void *)buf, (int)'A, (size_t)5000);
OCl St nt Execut e(svchp, stnthp, errhp, (ub4) 1, (ub4) O,
(const OCl Snapshot*) 0, (OC Snapshot*) 0, (ub4) OCl _DEFAULT);

}

Binding LONG Data to LOB Columns Using Piecewise INSERT with

Polling

ORACLE

This example illustrates using piecewise | NSERT with polling using the data interface
for LOBs.

voi d piecew se_insert()
{
text *sqglstm = (text *)"INSERT INTO Print_media(Product_id, Ad_id,\
Ad_sourcetext) VALUES (:1, :2, :3)";
ub2 rcode;
ubl piece, i;
word product _id = 2004;
word ad_id = 2;
ub4 buflen;
char buf[5000];

OCl St nt Prepare(stnthp, errhp, sqlstnt, (ub4)strlen((char *)sqlstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);
OCl Bi ndByPos(st nthp, &ndhp[0], errhp, (ub4) 1,
(dvoid *) &product _id, (sh4) sizeof(product_id), SQT_INT,
(dvoid *) 0, (ub2 *)0, (ub2 *)O0,
(ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);
OCl Bi ndByPos(st nt hp, &ndhp[1], errhp, (ub4) 2,
(dvoid *) &ad_id, (sh4) sizeof(ad_id), SQLT_INT,
(dvoid *) 0, (ub2 *)0, (ub2 *)O,
(ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);
OCl Bi ndByPos(stnt hp, &ndhp[2], errhp, (ub4) 3,
(dvoid *) 0, (sh4) 15000, SQLT_LNG
(dvoid *) 0, (ub2 *)0, (ub2 *)O,
(ub4) 0, (ub4 *) 0, (ub4) OCI _DATA AT _EXEC);

i =0;
while (1)
{ .

i +4;

retval = OCl St nt Execute(svchp, stnthp, errhp, (ub4) 1, (ub4) O,
(CONST OCl Snapshot*) 0, (OC Snapshot *)
(ub4) OCl _DEFAULT);

0,

switch(retval)
{
case OCl _NEED DATA:
menset ((void *)buf, (int)' A +i, (size_t)5000);
bufl en = 5000;
if (i == 1) piece = OCl _FI RST_PI ECE;
else if (i == 3) piece = OCl _LAST_PI ECE;
el se piece = OCl _NEXT_PI ECE;

if (OC StntSetPiecelnfo((dvoid *)bndhp[2],

(ub4)OCl _HTYPE_BIND, errhp, (dvoid *)buf,
&uflen, piece, (dvoid *) 0, &rcode))

9-17

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

printf("ERROR OCl StntSetPiecelnfo: % \n", retval);
break;

}

br eak;

case OCl _SUCCESS:
break;

defaul t:
printf("oci exec returned % \n", retval);
report_error(errhp);
retval = OCl _SUCCESS;

} I* end switch */

if (retval == OCl _SUCCESS)
break;

}/* end while(l) */
}

Binding LONG Data to LOB Columns Using Piecewise INSERT with
Callback

This example illustrates binding LONG data to LOB columns using a piecewise | NSERT
with callback:

voi d cal | back_insert ()
{
word buflen = 15000;
word product _id = 2004;
word ad_id = 3;
text *sqglstm = (text *) "INSERT INTO Print_media(Product_id, Ad_id,\
Ad_sourcetext) VALUES (:1, :2, :3)";
word pos = 3;

OCl St nt Prepare(stnthp, errhp, sqlstnt, (ub4)strlen((char *)sqlstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT)

OCl Bi ndByPos(st nt hp, &ndhp[0], errhp, (ub4) 1,
(dvoid *) &product _id, (sh4) sizeof(product_id), SQT_INT,
(dvoid *) 0, (ub2 *)0, (ub2 *)O0,
(ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);
OCl Bi ndByPos(stnt hp, &ndhp[1], errhp, (ub4) 2,
(dvoid *) &ad_id, (sh4) sizeof(ad_id), SQLT_INT,
(dvoid *) 0, (ub2 *)0, (ub2 *)O0,
(ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT);
OCl Bi ndByPos(stnthp, &bndhp[2], errhp, (ub4) 3,
(dvoid *) 0, (sb4) buflen, SQT_CHR
(dvoid *) 0, (ub2 *)0, (ub2 *)O0,
(ub4) 0, (ub4 *) 0, (ub4) OC _DATA AT _EXEC);

OCl Bi ndDynami c(bndhp[2], errhp, (dvoid *) (dvoid *) é&pos,
insert_cbk, (dvoid *) 0, (OCICallbackQutBind) 0);

OCl St nt Execut e(svchp, stnthp, errhp, (ub4) 1, (ub4) O,
(const OCl Snapshot*) 0, (OCl Snapshot*) O,
(ub4) OCI _DEFAULT);
} I* end insert_data() */

/* Inbind call back to specify input data. */

static sh4 insert_cbk(dvoid *ctxp, OC Bind *bindp, ub4 iter, ub4 index,
dvoid **bufpp, ub4 *al enpp, ubl *piecep, dvoid **indpp)

ORACLE 9-18

Binding LONG Data to LOB Columns Using an Array INSERT

ORACLE

}

Chapter 9

The Data Interface Used for Persistent LOBs in OCI

static int a = 0;

word j;

ub4 inpos = *((ub4 *)ctxp);
char buf[5000];

swi t ch(inpos)
{
case 3:
menset ((void *)buf, (int) "A +a, (size_t) 5000);
*bufpp = (dvoid *) buf;
*al enpp = 5000 ;
a++;
br eak;

default: printf("ERROR invalid position nunber: %\n", inpos);

}

*indpp = (dvoid *) O;
*piecep = OCl _ONE_PI ECE;
if (inpos == 3)

if (a<=1)

{
*pi ecep = OCl _FI RST_PI ECE;
printf("Insert callback: 1st piece\n");

else if (a<3)
{
*pi ecep = OCl _NEXT_PI ECE;
printf("Insert callback: %l'th piece\n", a);
}
el se {
*pi ecep = OCl _LAST_PI ECE;
printf("Insert callback: %l'th piece\n", a);
a=0;
}

}
return OCI_CONTI NUE;

This example illustrates binding character data for LOB columns using an array | NSERT
operation:

void array_insert()

{

ub4 i;

word buflen;

word arrbuf1[5];

word arrbuf2[5];

text arrbuf3[5][5000];

text *insstm = (text *)"INSERT INTO Print_media(Product_id, Ad_id,\
Ad_sourcetext) VALUES (:PID, :AID, :SRCTXT)";

OCl St nt Prepare(stnthp, errhp, insstnt,

(ub4)strlen((char *)insstnt), (ub4) OCI _NTV_SYNTAX,

(ub4) OCI_DEFAULT);

OCl Bi ndByNanme(st nt hp, &bndhp[0], errhp,

9-19

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

(text *) ":PID", (sh4) strlien((char *) ":PID"),

(dvoid *) &arrbuf1[0], (sb4) sizeof(arrbufl[0]), SQLT_INT,
(dvoid *) 0, (ub2 *)0, (ub2 *) 0,

(ub4) 0, (ub4 *) 0, (ub4) OC_DEFAULT);

OCl Bi ndByNanme(st nt hp, &bndhp[1], errhp,
(text *) ":AID', (sh4) strlien((char *) ":AID"),
(dvoid *) &arrbuf2[0], (sb4) sizeof(arrbuf2[0]), SQLT_INT,
(dvoid *) 0, (ub2 *)0, (ub2 *) 0,
(ub4) 0, (ub4 *) 0, (ub4) OC_DEFAULT);

OCl Bi ndByNanme(st nt hp, &bndhp[2], errhp,
(text *) ":SRCTXT", (sh4) strlen((char *) ":SRCTXT"),
(dvoid *) arrbuf3[0], (sh4) sizeof(arrbuf3[0]), SQLT_CHR,
(dvoid *) 0, (ub2 *) 0, (ub2 *) 0,
(ub4) 0, (ub4 *) 0, (ub4) OCI _DEFAULT);

OCl Bi ndArrayOF Struct (bndhp[0], errhp sizeof (arrbuf1[0]),
i ndsk, rlsk, rcsk);

OCl Bi ndArrayOF Struct (bndhp[1], errhp, sizeof (arrbuf2[0]),
i ndsk, rlsk, rcsk);

OCl Bi ndArrayOF Struct (bndhp[2], errhp, sizeof (arrbuf3[0]),
i ndsk, rlsk, rcsk);

for (i=0; i<5; i++)
{
arrbuf 1[i] = 2004,
arrbuf2[i] = i+4;
menset ((void *)arrbuf3[i], (int)" A+, (size_t)5000);
1
OCl St nt Execut e(svchp, stnthp, errhp, (ub4) 5, (ub4) O,
(const OCl Snapshot*) 0, (OC Snapshot*) O,
(ub4) OCI _DEFAULT);

}

Selecting a LOB Column into a LONG Buffer Using a Simple Fetch

This example illustrates selecting a LOB column using a simple fetch:

voi d sinple_fetch()
{
word retval;
text buf[15000];
text *selstmt = (text *) "SELECT Ad_sourcetext FROM Print_medi a WHERE\
Product _id = 2004";

OCl St nt Prepare(stnthp, errhp, selstnt, (ub4)strlen((char *)selstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);

retval = OCl Stnt Execute(svchp, stnthp, errhp, (ub4) 0, (ub4) O,
(const OCl Snapshot*) 0, (OCl Snapshot*) O,
(ub4) OCI _DEFAULT);
while (retval == OCl _SUCCESS || retval == OCl _SUCCESS_W TH_| NFO
{
CCl Defi neByPos(stnthp, &defhp, errhp, (ub4) 1, (dvoid *) buf,
(sh4) sizeof (buf), (ub2) SQLT_CHR (dvoid *) O,
(ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT);
retval = OCl StntFetch(stnthp, errhp, (ub4) 1,
(ub4) OCI _FETCH NEXT, (ub4) OCl_DEFAULT);

ORACLE 9-20

}

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

if (retval == OCl _SUCCESS || retval == OCl _SUCCESS W TH_I NFO)
printf("buf = %*s\n", 15000, buf);
1

Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch

with Polling

ORACLE

This example illustrates selecting a LOB column into a LONG buffer using a piecewise
fetch with polling:

voi d piecew se_fetch()

{

text buf[15000];

ub4 buf | en=5000;

word retval ;

text *selstnt = (text *) "SELECT Ad_sourcetext FROM Print_media
VWHERE Product _id = 2004 AND Ad_id = 2";

OCl St nt Prepare(stnthp, errhp, selstnt,
(ub4) strlen((char *)selstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);

OClI Def i neByPos(stnthp, &dfnhp, errhp, (ub4) 1,
(dvoid *) NULL, (sh4) 100000, SQLT_LNG
(dvoid *) 0, (ub2 *) 0,
(ub2 *) 0, (ub4) OCl_DYNAM C FETCH);

retval OCl St nt Execut e(svchp, stnthp, errhp, (ub4) 0, (ub4) O,
(CONST OCl Snapshot*) 0, (OCI Snapshot *)

(ub4) OCI _DEFAULT);

0,

retval = OClI StntFetch(stnthp, errhp, (ub4) 1,
(ub2) OCI_FETCH NEXT, (ub4) OCl _DEFAULT):

while (retval !'= OCl _NO DATA && retval != OCl _SUCCESS)
{

ubl piece;

ub4d iter;

ub4 idx;

genclr((void *)buf, 5000);
switch(retval)
{
case OCl _NEED DATA:
OCl St nt Get Pi ecel nfo(stnthp, errhp, &hdlptr, &hdltype,
& n_out, &ter, & dx, &piece);
bufl en = 5000;
OCl St nt Set Pi ecel nfo(hdl ptr, hdltype, errhp,
(dvoid *) buf, &buflen, piece,
(CONST dvoid *) & ndpl, (ub2 *) 0);
retval = OCl _NEED DATA;
break;
defaul t:
printf("ERROR piece-wise fetching, %l\n", retval);
return;
} [* end switch */
retval = OCl StntFetch(stnthp, errhp, (ub4) 1,
(ub2) OCl _FETCH NEXT, (ub4) OCl _DEFAULT);

9-21

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

printf("Data : %5000s\n", buf);
} /* end while */
}

Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch
with Callback

ORACLE

This example illustrates selecting a LONG column into a LOB buffer when using a
piecewise fetch with callback:

char buf[5000] ;
voi d cal | back_fetch()
{
word outpos = 1;
text *sqlstnmt = (text *) "SELECT Ad_sourcetext FROM Print_medi a WHERE
Product _id = 2004 AND Ad_id = 3";

OCl St nt Prepare(stnthp, errhp, sqlstnt, (ub4)strlen((char *)sqlstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);
OClI Def i neByPos(stnthp, &dfnhp[0], errhp, (ub4) 1,
(dvoid *) 0, (sb4)3 * sizeof(buf), SQT_CHR
(dvoid *) 0, (ub2 *)0, (ub2 *)O,
(ub4) OCI _DYNAM C FETCH);

OCl Def i neDynani c(df nhp[0], errhp, (dvoid *) &outpos,
(OCl Cal | backDefine) fetch_chk);

OCl St nt Execut e(svchp, stnthp, errhp, (ub4) 1, (ub4) O,
(const OCl Snapshot*) 0, (OC Snapshot*) O,
(ub4) OCI _DEFAULT);

buf[4999] ="\0';

printf("Select callback: Last piece: %\n", buf);

}

/* __ */
/* Fetch cal I back to specify buffers. */

/* __ */

static sb4 fetch_cbk(dvoid *ctxp, OC Define *dfnhp, ub4 iter, dvoid **buf pp,
ub4 **al enpp, ubl *piecep, dvoid **indpp, ub2 **rcpp)
{
static int a = 0;
ub4 outpos = *((ub4 *)ctxp);
ub4 len = 5000;
swi t ch(out pos)

case 1:
a ++;
*bufpp = (dvoid *) buf;
*al enpp = & en;
br eak;
defaul t:
*bufpp = (dvoid *) O;
*al enpp = (ub4 *) 0;
printf("ERROR invalid position nunber: 9%\ n", outpos);
1
*indpp = (dvoid *) O;
*repp = (ub2 *) 0;

buf[len] ="'\0";

9-22

if (a<=1)
{
*piecep = OCl _FI RST_PI ECE;

printf("Select callback: Oth piece\n");

else if (a<3d)

{
*pi ecep = OCl _NEXT_PI ECE;

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

printf("Select callback: %l'th piece: %\n", a-1, buf);

}

el se {
*pi ecep = OCl _LAST_PI ECE;

printf("Select callback: %l'th piece: %\n", a-1, buf);

a=0;
1
return OCl_CONTI NUE;
}

Selecting a LOB column into a LONG buffer using piecewise FETCH
with callback: Example with Length

This example illustrates selecting a LONG column into a LOB buffer when using a
piecewise fetch with callback, along with fetching the length of LOB data.

ORACLE

#define MAX BUF_SZ 1048576 /* Max allocation size = IM*/

char *buffer = NULL;
ub8 buf _len = 0;

/* Define callback function */

sh4 DefineCbk(void *cbctx, OClDefine *defnhp, ub4 iter,
void **bufp, ub4 **alenp, ubl *piecep,

void **indp, ub2 **rcodep)

{
static sword piece = 1;
bool ean isValidLen = FALSE;
buf len = 0;
if (piece ==1)

OCl Ser ver Dat aLengt hGet (def nhp, & sValidLen, (ub8 *) &buf_|en,
(CCl Error *)cbctx, 0);

if (buf_len > MAX_BUF_S7)
buf len = MAX BUF_SZ;

buffer = (char *)malloc(buf_len);
*bufp = buffer;
*alenp = (ub4 *) &buf_len;

}

el se

printf("Data = %\n", buffer);
buf _len = MAX BUF_SZ;

}.

pi ece+t;

return OCl _CONTI NUE;

9-23

Chapter 9
The Data Interface Used for Persistent LOBs in OCI

voi d define_cal | back()

{

text *sqlstm = (text *)"select lobcol fromlob_table";

OCl St nt Prepare(stnthp, errhp, sqlstnt, (ub4)strien(sqlstnt),
(ub4) COCI _NTV_SYNTAX, (ub4) OCl _DEFAULT);

OClI Def i neByPos(stnthp, &defhpl, errhp, (ub4)1, (dvoid *)O,
(sh4) (10 * MAX_BUF_SZ), SQLT_STR (dvoid *) 0,
(ub2 *) 0, (ub2 *) 0, (ub4)OC _DYNAM C FETCH);

OCl Def i neDynani c(def hpl, errhp, errhp,

(OC Cal I backDef i ne) Def i neCbk) ;

OCl St nt Execut e(svchp, stnthp, errhp, (ub4) 0, (ub4) O,
(CONST OCl Snapshot *) 0, (OCI Snapshot *) 0,
(ub4) OOl _DEFAULT);

OCl Stnt Fetch(stnthp, errhp, 1, OCI_FETCH NEXT, OCl _DEFAULT);

buffer[buf_len] ="'\0";
printf(" Data = %\n", buffer);
if (buffer)
free(buffer);
}

Selecting a LOB Column into a LONG Buffer Using an Array Fetch

ORACLE

This example illustrates selecting a LOB column into a LONG buffer using an array
fetch:

void array_fetch()
{
word i;
text arrbuf[5][5000];
text *selstnt = (text *) "SELECT Ad_sourcetext FROM Print_medi a WHERE
Product _id = 2004 AND Ad_id >=4";

OCl St nt Prepare(stnthp, errhp, selstnt, (ub4)strlen((char *)selstnt),
(ub4) OCI _NTV_SYNTAX, (ub4) OCI _DEFAULT);

OCl St nt Execut e(svchp, stnthp, errhp, (ub4) 0, (ub4) O,
(const OCl Snapshot*) 0, (OCl Snapshot*) 0, (ub4) OCl _DEFAULT);

OCl Def i neByPos(stnthp, &defhpl, errhp, (ub4) 1,
(dvoid *) arrbuf[0], (sb4) sizeof(arrbuf[0]),
(ub2) SQLT_CHR (dvoid *) 0,
(ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT);

OCl DefineArrayOf Struct (df nhpl, errhp, sizeof (arrbuf[0]), indsk,
rlsk, rcsk);

retval = OCl StntFetch(stnthp, errhp, (ub4) 5,
(ub4) OCI _FETCH NEXT, (ub4) OCl _DEFAULT);
if (retval == OCl _SUCCESS || retval == OCl _SUCCESS_W TH_ I NFO

{
printf("%5000s\n", arrbuf[0]);
printf("%5000s\n", arrbuf[1]);
printf("%5000s\n", arrbuf[2]);
printf("%5000s\n", arrbuf[3]);
printf("%5000s\n", arrbuf[4]);
1

9-24

Chapter 9
The Data Interface Used with Persistent LOBs in Java

The Data Interface Used with Persistent LOBs in Java

You can also read and write CLOB and BLOB data using the same streaming mechanism
as for LONG and LONG RAWdata.

To read, use defi neCol utmType(nn, Types. LONGVARCHAR) or def i neCol umType(nn,
Types. LONGVARBI NARY) on the column. This produces a direct stream on the data as if
it is a LONG or LONG RAWcolumn. For input in a Pr epar edSt at enent , you may use

set Bi naryStrean(), set Character Strean(), or set Ascii Strean() for a parameter
which is a BLOB or CLOB. These methods use the stream interface to create a LOB in
the database from the data in the stream. If the length of the data is known, for better
performance, use the versions of set Bi nar ySt r eam() or set Char act er St r eam
functions which accept the length parameter. The data interface also supports
standard JDBC methods such as getString/getBytes on ResultSet and
CallableStatement and setString/setBytes on PreparedStatement to read and write
LOB data. It is easier to code, and in many cases faster, to use these APIs for LOB
access. All these techniques reduce database round trips and may result in improved
performance in some cases. See the Javadoc on stream data for the significant
restrictions which apply, at htt p: / / www. or acl e. conf t echnol ogy/ .

Refer to the following in the JDBC Developer's Guide and Reference:

See Also:

e Oracle Database JDBC Developer's Guide, "Working with LOBs and
BFILEs", section "Data Interface for LOBs"

e Oracle Database JDBC Developer's Guide, "JDBC Standards Support"

The Data Interface Used with Remote LOBs

The data interface for insert, update, and select of remote LOBs (access over a
dbl i nk) is supported after Oracle Database 10g Release 2.

About the Data Interface with Remote LOBs

ORACLE

The examples discussed use the print _nedi a table created in two schemas: dbs1 and
dbs2. The CLOB column of that table used in the examples shown is ad_fi nal text. The
examples to be given for PL/SQL, OCI, and Java use binds and defines for this one
column, but multiple columns can also be accessed. Here is the functionality
supported and its limitations:

* You can define a CLOB as CHAR or NCHAR and an NCLOB as CHAR or NCHAR. CLOB
and NCLOB can be defined as a LONG. A BLOB can be defined as a RAWor a LONG
RAW

» Array binds and defines are supported.

9-25

http://www.oracle.com/technology/

Chapter 9
The Data Interface Used with Remote LOBs

¢ See Also:

"Remote Data Interface Example in PL/SQL" and the sections following it.

Non-Supported Syntax

Certain syntax is not supported for remote LOBs.

* Queries involving more than one database are not supported:

SELECT t1.1obcol, a2.lobcol FROMt1, t2.1|obcol @bs2 a2 WHERE
LENGTH(t 1. I obcol) = LENGTH(a2. | obcol);

Neither is this query (in a PL/SQL block):

SELECT t1.1obcol INTO varchar_bufl FROMt1@lbsl
UNION ALL
SELECT t2.1obcol |NTO varchar_buf2 FROM t2@bs2;

* Only binds and defines for data going into remote persistent LOB columns are
supported, so that parameter passing in PL/SQL where CHAR data is bound or
defined for remote LOBs is not allowed because this could produce a remote
temporary LOB, which are not supported. These statements all produce errors:

SELECT foo() INTO varchar_buf FROMtabl el@lbs2; -- foo returns a LOB
SELECT foo()@bs INTO char_val FROM DUAL; -- foo returns a LOB

SELECT XM.Type().getcl obval |NTO varchar_buf FROMtabl el@bs2;
» If the remote object is a view such as

CREATE VIEWv AS SELECT foo() a FROM... ; -- foo returns a LOB
/* The | ocal database then tries to get the CLOB data and returns an error */
SELECT a | NTO varchar _buf FROM v@bs2;

This returns an error because it produces a remote temporary LOB, which is not
supported.

* RETURNI NGI NTOdoes not support implicit conversions between CHAR and CLCB.

e PL/SQL parameter passing is not allowed where the actual argument is a LOB
type and the remote argument is a VARCHAR2, NVARCHAR2, CHAR, NCHAR, or RAW

Remote Data Interface Example in PL/SQL

The data interface only supports data of size less than 32KB in PL/SQL. The following
shippet shows a PL/SQL example:

CONNECT pm
decl are
my_ad varchar(6000) := I|pad('b', 6000, 'b");
BEG N
I NSERT | NTO print_medi a@bs2(product _id, ad_id, ad_finaltext)
VALUES (10000, 10, ny_ad);
- Reset the buffer value
my_ad :="a';
SELECT ad_finaltext INTO my_ad FROM print_medi a@bs2

ORACLE 9-26

Chapter 9
The Data Interface Used with Remote LOBs

VHERE product _id = 10000;
END;
/

If ad_final t ext were a BLOB column instead of a CLOB, ny_ad has to be of type RAW If
the LOB is greater than 32KB - 1 in size, then PL/SQL raises a truncation error and the
contents of the buffer are undefined.

Remote Data Interface Example in OCI

The data interface only supports data of size less than 2 Byt es (the maximum value
possible of a variable declared as sh4) for OCI. The following pseudocode can be
enhanced to be a part of an OCI program:

text *sql = (text *)"insert into print_nedi a@bs2
(product _id, ad_id, ad_finaltext)
values (:1, :2, :3)";
OCl StntPrepare(...);
OCl Bi ndByPos(...); /* Bind data for positions 1 and 2
* which are independent of LOB */
OCl Bi ndByPos(stnt hp, &bndhp[2], errhp, (ub4) 3,
(dvoid *) charbufl, (sh4) len_charbufl, SQT_CHR
(dvoid *) 0, (ub2 *)0, (ub2 *)0, 0, 0, OCl _DEFAULT);
OCl St nt Execute(...);

text *sql = (text *)"select ad_finaltext from print_nedi a@hbs2
where product _id = 10000";
OCl StntPrepare(...);
OCl Def i neByPos(stnthp, &fnhp[2], errhp, (ub4) 1,
(dvoid *) charbuf2, (sh4) len_charbuf2, SQT_CHR
(dvoid *) 0, (ub2 *)0, (ub2 *)0, OCI _DEFAULT);
QOCl St nt Execute(...);

If ad_final t ext were a BLOB instead of a CLOB, then you bind and define using type
SQLT _BI N. If the LOB is greater than 2GB - 1 in size, then OCI raises a truncation error
and the contents of the buffer are undefined.

Remote Data Interface Examples in JDBC

ORACLE

The following code snippets works with all three JDBC drivers (OCI, Thin, and kprb in
the database):

Bind:

This is for the non-streaming mode:

String sql = "insert into print_nedia@bs2 (product_id, ad_id, ad_final text)" +
" values (:1, :2, :3)";
PreparedStat ement pstnmt = conn. prepareStatenent(sql);
pstnt.setint(1, 2);
pstnt.setint(2, 20);
pstnt.setString(3, "Java string");
int rows = pstnt.executeUpdate();

9-27

ORACLE

Chapter 9
The Data Interface Used with Remote LOBs

For the streaming mode, the same code as the preceding works, except that the
set String() statement is replaced by one of the following:

pstnt.set CharacterStream(3, new Label edReader (), 1000000);
pstnt.setAscii Strean{ 3, new Label edAsciilnputStrean(), 1000000);

Here, Label edReader () and Label edAsci i I nput Strean() produce character and
ASCII streams respectively. If ad_fi nal t ext were a BLOB column instead of a CLOB,
then the preceding example works if the bind is of type RAW

pstnt.setBytes(3, <some byte[] array>);
pstnt.setBinaryStrean{ 3, new Label edl nput Strean(), 1000000);

Here, Label edl nput St ream() produces a binary stream.
Define:

For non-streaming mode:

Oracl eStatenment stnt = (OracleStatenent)(conn. createStatenment());
stnt. defineCol umType(1, Types.VARCHAR);
Resul t Set rst = stnt.executeQuery("select ad_finaltext fromprint_nmedi a@bs2");
whi le(rst.next())
{
String s =rst.getString(1);
Systemout.printin(s);
}

For streaming mode:

OacleStatenent stnt = (OracleStatement)(conn.createStatenent());
stnt. defineCol umType(1, Types.LONGVARCHAR);
Resul t Set rst = stnt.executeQuery("select ad_finaltext from print_nedi a@bs2");
while(rst.next())

Reader reader = rst.getCharacterStrean(1);
whil e(reader.ready())

{

Systemout. print((char)(reader.next()));
1
Systemout. printin();

}

If ad_final t ext were a BLOB column instead of a CLOB, then the preceding examples
work if the define is of type LONGVARBI NARY:

Oracl eStatenent stnt = (Oracl eStatenent)conn. createStatenent();

stnt. defineCol umType(1, Types.|NTEGER);
stnt. defi neCol umType(2, Types. LONGVARBI NARY);

Resul t Set rset = stnt.executeQuery("SELECT ID, LOBCOL FROM LOBTAB@AYSELF");

whi | e(rset.next())
{
/* using getBytes() */
/*
byte[] b = rset.getBytes("LOBCOL");
Systemout.printIn("ID " + rset.getInt("ID') +" length: " + b.length);
*/

9-28

Chapter 9
The Data Interface Used with Remote LOBs

[* using getBinaryStrean() */

I nput Stream byte_stream = rset. get Bi naryStream"LOBCOL");

byte [] b = new byte [100000];

int b_len = byte_streamread(b);

Systemout.printIn("ID " + rset.getInt("ID') +" length: " + b_len);

byte_stream cl ose();

See Also:

Oracle Database JDBC Developer's Guide

ORACLE 9-29

Reference Semantics LOBSs

This part provides details on using LOB APIs in supported environments. Examples of
LOB API usage are given.

This part contains these chapters:

e Overview of Supplied LOB APIs
* LOB APIs for BFILE Operations
e Using LOB APIs

ORACLE

Overview of Supplied LOB APIs

There are APIs supplied to support LOBSs.

Topics:

* Programmatic Environments That Support LOBs

e Comparing the LOB Interfaces

* Using PL/SQL (DBMS_LOB Package) to Work With LOBs
e Using OCI to Work With LOBs

e Using C++ (OCCI) to Work With LOBs

e Using C/C++ (Pro*C) to Work With LOBs

e Using COBOL (Pro*COBOL) to Work With LOBs

e Using Java (JDBC) to Work With LOBs

e Oracle Provider for OLE DB (OraOLEDB)

e Overview of Oracle Data Provider for .NET (ODP.NET)

Programmatic Environments That Support LOBs

Table 10-1 lists the programmatic environments that support LOB functionality.

See Also:

APIs for supported LOB operations are described in detail in the following
chapters:

e Operations Specific to Persistent and Temporary LOBs
e Using LOB APIs
e LOB APIs for BFILE Operations

Table 10-1 Programmatic Environments That Support LOBs

Language Precompiler or Related Sections Related Books
Interface
Program

PL/SQL DBMS_LOB "Using PL/SQL (DBMS_LOB Oracle Database PL/SQL Packages
Package Package) to Work With LOBs". and Types Reference

C Oracle Call "Using OCI to Work With LOBs". Oracle Call Interface Programmer’s
Interface for C Guide
(ocCl)

ORACLE 10-1

Table 10-1 (Cont.) Programmatic Environments That Support LOBs

Chapter 10
Comparing the LOB Interfaces

Language Precompiler or Related Sections Related Books
Interface
Program

C++ Oracle Call "Using C++ (OCCI) to Work With Oracle C++ Call Interface
Interface for C++ LOBs". Programmer's Guide
(occi

C/C++ Pro*C/C++ "Using C/C++ (Pro*C) to Work With Pro*C/C++ Programmer's Guide
Precompiler LOBs".

COBOL Pro*COBOL "Using COBOL (Pro*COBOL) to Pro*COBOL Programmer's Guide
Precompiler Work With LOBs".

Java JDBC Application "Using Java (JDBC) to Work With Oracle Database JDBC Developer’s
Programmatic LOBs". Guide.
Interface (API)

ADO/OLE DB Oracle Provider "Oracle Provider for OLE DB Oracle Provider for OLE DB
for OLE DB (OraOLEDB)" Developer's Guide for Microsoft
(OraOLEDB). Windows

.NET Oracle Data "Overview of Oracle Data Provider Oracle Data Provider for NET

Provider for .NET

(ODP.NET)

for .NET (ODP.NET) "

Developer's Guide for Microsoft

Windows

Comparing the LOB Interfaces

Table 10-2 and Table 10-3 compare the eight LOB programmatic interfaces by listing
their functions and methods used to operate on LOBs. The tables are split in two
simply to accommodate all eight interfaces. The functionality of the interfaces, with
regards to LOBs, is described in the following sections.

Table 10-2 Comparing the LOB Interfaces, 1 of 2

PL/SQL: DBMS_LOB c (ocl) C++ (OCCI) Pro*CIC++ and
(dbmslob.sql) (ociap.h) (occiData.h). Also for Pro*COBOL
Clob and Bfile classes.
DBMS_LOB. COMPARE N/A N/A N/A
DBMVS_LOB. | NSTR N/A N/A N/A
DBMS_LOB. SUBSTR N/A N/A N/A
DBMS_LOB. APPEND CCl LobAppend() Bl ob. append() APPEND
N/A (use PL/SQL assign CCl LobAssi gn() ASSI GN
operator)
N/A OCl LobChar Set Form() O ob. get Char set Form N/A
(CLOB only)
N/A CCl LobChar Set 1 d() C ob. get Charsetld() N/A
(CLOB only)
DBVS_LOB. CLOSE OCl Lobd ose() Bl ob. cl ose() CLCSE
N/A N/A Cob.closeStrean() N/A
DBMS_LOB. COPY OCl LobCopy2() Bl ob. copy() CoPY
ORACLE 10-2

Table 10-2 (Cont.) Comparing the LOB Interfaces, 1 of 2

Chapter 10
Comparing the LOB Interfaces

PL/SQL: DBMS_LOB C (ocql) C++ (OCCI) Pro*CIC++ and
(dbmslob.sql) (ociap.h) (occiData.h). Also for Pro*COBOL
Clob and Bfile classes.
DBMVS_LOB. ERASE CCl LobEr ase2() N/A ERASE
DBMS_LOB. FI LECLOSE OCl LobFi | ed ose() Q ob. cl ose() CLCSE
DBMS_LOB. FI LECLOSEALL OCl LobFi | ed oseAl l (N/A FILE CLOSE ALL
)
DBMS_LOB. FI LEEXI STS OCl LobFi | eExi st () Bfile.fileExists() DESCR BE
[FI LEEXI STS]
DBMS_LOB.GETCHUNKSIZE OCILobGetChunkSize() Blob.getChunkSize() DESCRIBE
[CHUNKSIZE]
DBMS_LOB. GET_STORAGE LIM T OCI LobGCet St orageLi m N/A N/A
it()
DBMS_LOB. GETOPTI ONS OCl LobGet Options() Bl ob/Cl ob::get Options N/A

DBMS_LCB. FI LEGETNAMVE

DBMS_LOB. FI LEI SOPEN
DBMS_LOB. FI LEOPEN

N/A (use BFILENAME operator)

DBVS_LOB. GETLENGTH
N/A

DBMS_LOB. | SOPEN
DBMS_LOB. LOADFROMFI LE

N/A

DBVS_LOB. OPEN
DBMS_LOB. READ
DBMS_LOB. SETOPTI ONS
DBVS_LOB. TRI M
DBMS_LOB. VR TE
DBMS_LOB. IRl TEAPPEND

DBMS_LOB. CREATETEMPORARY

DBMS_LCB. FREETEMPCRARY

DBMVS_LOB. | STEMPORARY

ORACLE

OCl LobFi | eGet Name()

OCl LobFi | el sOpen()
OCl LobFi | eOpen()
OCl LobFi | eSet Name()
CCl LobCet Lengt h2()
CCl Lobl sEqual ()

CCl Lobl sOpen()

CCl LobLoadFronFi | e
2()

OCl LobLocat or I sl ni
t()

CCl LobOpen()

OCl LobRead()

OCl LobSet Opti ons()
OCl LobTri m2()

OCl LobWite2

CCl LobW i t eAppend2(
)

OCl LobCr eat eTenpor a
ry()

OCl LobFr eeTenpor ar
y()

OCl Lobl sTenpor ary()

Bfile.getFileNang()
and
Bfile.getDirAlias()

Bfile.isOpen()
Bfile.open()
Bfile.set Name()

Bl ob. | engt h()

Use operator = ()=/!=

Bl ob. i sQpen()

Use over | oadedcopy()

Cob.isinitialized(
)
Bl ob. open

Bl ob. read

Bl ob/Cl ob::set Opti ons
Blob.trim
Blob.wite

N/A

N/A

N/A

N/A

DESCRI BE DI RECTCRY,
FI LENAVE

DESCRI BE | SOPEN
OPEN

FI LE SET

DESCRI BE LENGTH
N/A

DESCRI BE | SOPEN
LOAD FROM FILE

N/A

CPEN

READ

N/A

TRIM

VRl TEORALOB.
VRI TE APPEND

N/A

N/A

N/A

10-3

Chapter 10
Comparing the LOB Interfaces

Table 10-2 (Cont.) Comparing the LOB Interfaces, 1 of 2

L]
PL/SQL: DBMS_LOB

(dbmslob.sql)

C (ocql)
(ociap.h)

C++ (OCCI)
(occiData.h). Also for
Clob and Bfile classes.

Pro*C/C++ and
Pro*COBOL

N/A COCl LobLocat or Assi g use operator = () or copy N/A
n() constructor
Table 10-3 Comparing the LOB Interfaces, 2 of 2
PL/SQL: DBMS_LOB Java (JDBC) ODP.NET
(dbmslob.sql)
DBMS_LOB. COVPARE Use DBMS_LOB. Oracl ed ob. Conpare
DBMS_LOB. | NSTR position Oracl ed ob. Sear ch
DBMS_LOB. SUBSTR get Byt es for BLOBs or N/A
BFI LEsget SubSt ri ng for
CLOBs
DBMS_LOB. APPEND Use | engt h and then Oracl ed ob. Append
put Bytes() or
Put String()
OCl LobAssi gn() N/A [use equal sign] O acl eC oh. Cl one
CCl LobChar Set For m() N/A N/A
CCl LobChar Set 1 d() N/A N/A
DBMS_LOB. CLOSE use DBVS_LOB. Oracl ed ob. O ose
DBMS_LOB. COPY Use read and write O acl ed ob. CopyTo
DBVS_LOB. ERASE Use DBMS_LOB. O acl ed ob. Erase
DBMS_LOB. FI LECLOSE closeFile Oracl eBFile. O oseFile
DBMVS_LOB. FI LECLOSEALL Use DBMS_LOB. N/A
DBMS_LOB. FI LEEXI STS fileExists Oracl eBFil e. Fil eExi sts
DBMS_LOB. GETCHUNKSI ZE get ChunkSi ze O acl ed ob. Opt i munChunkSi
ze
DBVS_LOB. FI LEGETNAVE getDirAlias O acl eBFi | e. Di rect or yNane
get Nane Oracl e. BFil e. Fi |l eName
DBMS_LOB. FI LEI SOPEN Use DBMS_LOB. | SOPEN Oracl eBFi | e. I sOpen
DBMS_LOB. FI LEOPEN openFile Oracl eBFil e. OpenFil e
OCl LobFi | eSet Name() Use BFI LENAVE Oracl eBFi | e. Di rect or yNane
Oracle.BFile.Fil eNane
CCl LobFl ushBuffer () N/A N/A
DBMS_LOB. GETLENGTH I ength O acl ed ob. Length
N/A equal s() N/A
DBMS_LOB. | SOPEN use DBMS_LOB. | SOPEN() Oracl ed ob. I s nChunkWite
Mode
ORACLE 10-4

Chapter 10
Using PL/SQL (DBMS_LOB Package) to Work With LOBs

Table 10-3 (Cont.) Comparing the LOB Interfaces, 2 of 2
|

PL/SQL: DBMS_LOB Java (JDBC) ODP.NET

(dbmslob.sql)

DBMS_LOB. OPEN Use DBMS_LOB. OPEN() O acl ed ob. Begi nChunkW i t
e

DBMS_LOB. READ BLOB or BFI LE: Oracl ed ob. Read

get Bytes() and
get Bi naryStrean)

CLOB:getString() and
get SubString() and
get Char act er St ream()

DBMS_LOB. TRI M Use DBMS_LOB. TRI M) O acl ed ob. Set Lengt h

DBVS_LOB. WRI TE BLOB: set Byt es() and OacleCob.Wite
set Bi naryStrean)

CLOB:setString() and
set Character Stream()

DBVS_LOB. WRI TEAPPEND Use | engt h() and then Oracl ed ob. Append
put String() or

put Byt es()
DBVS_LOB. CREATETEMPORARY N/A O acl ed ob constructors
DBVS_LOB. FREETEMPCRARY N/A O acl ed ob. Di spose
DBMS_LOB. | STEMPORARY N/A Oracl ed ob. | sTenporary

Using PL/SQL (DBMS_LOB Package) to Work With LOBs

The PL/SQL DBM5_LOB package can be used for the following operations:

e Internal persistent LOBs and Temporary LOBs: Read and modify operations,
either entirely or in a piece-wise manner.

e BFILEs: Read operations

" See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
documentation, including parameters, parameter types, return values,
and example code.

Provide a LOB Locator Before Running the DBMS_LOB Routine

DBMS_LOB routines work based on LOB locators. For the successful completion of
DBM5_LOB routines, you must provide an input locator representing a LOB that exists in
the database tablespaces or external file system, before you call the routine.

ORACLE 10-5

Chapter 10
Using PL/SQL (DBMS_LOB Package) to Work With LOBs

Persistent LOBs: First use SQL to define tables that contain LOB columns, and
subsequently you can use SQL to initialize or populate the locators in these LOB
columns.

External LOBs: Define a DI RECTCORY object that maps to a valid physical directory
containing the external LOBs that you intend to access. These files must exist, and
have READ permission for Oracle Server to process. If your operating system
uses case-sensitive path names, then specify the directory in the correct case.

Once the LOBs are defined and created, you may then SELECT a LOB locator into a
local PL/SQL LOB variable and use this variable as an input parameter to DBMS_LOB for
access to the LOB value.

Examples provided with each DBMS_LOB routine illustrate this in the following sections.

¢ See Also:

Directory Objects

Guidelines for Offset and Amount Parameters in DBMS_LOB

Operations

The following guidelines apply to offset and amount parameters used in procedures in
the DBMS_LOB PL/SQL package:

ORACLE

For character data—in all formats, fixed-width and varying-width—the anount and
of f set parameters are in characters. This applies to operations on CLOB and
NCLOB data types.

For binary data, the of f set and anount parameters are in bytes. This applies to
operations on BLOB data types.

When using the following procedures:
— DBMS_LOB. LOADBLOBFROMWFI LE
— DBMS_LOB. LOADCLOBFROVFI LE

you cannot specify an amount parameter with a value larger than the size of the
BFI LE you are loading from. To load the entire BFI LE with these procedures, you
must specify either the exact size of the BFI LE, or the maximum allowable storage
limit.

When using DBM5S_LOB. READ, the anpunt parameter can be larger than the size of
the data. The amount should be less than or equal to the size of the buffer. The
buffer size is limited to 32K.

10-6

Chapter 10
Using PL/SQL (DBMS_LOB Package) to Work With LOBs

" See Also:

— Loading a LOB with Data from a BFILE

— About Loading a BLOB with Data from a BFILE

— Loading a CLOB or NCLOB with Data from a BFILE
— About Reading Data from a LOB

Determining Character Set ID

To determine the character set ID, you must know the character set name.

A user can select from the VSNLS VALI D_VALUES view, which lists the names of the
character sets that are valid as database and national character sets. Then call the
function NLS_CHARSET | D with the desired character set name as the one string
argument. The character set ID is returned as an integer. UTF16 does not work
because it has no character set name. Use character set ID = 1000 for UTF16.
Although UTF16 is not allowed as a database or national character set, the APIs in
DBVMS_LOB support it for database conversion purposes. DBVS_LOB. LOADCLOBFROVFI LE
and other procedures in DBM5S_LOB take character set ID, not character set name, as an
input.

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference for details
and supported Unicode encodings

e Oracle Database Globalization Support Guide for supported languages

PL/SQL Functions and Procedures for LOBs

ORACLE

¢ See Also:

PL/SQL functions and procedures that operate on BLOBs, CLOBs, NCLOBs, and
BFI LEs

e Table 10-4 to modify persistent LOB values

e Table 10-5 to read or examine LOB values

e Table 10-6 to create, free, or check on temporary LOBs

e Table 10-7 for read-only functions on external LOBs (BFI LES)
e Table 10-8 to open or close a LOB, or check if LOB is open

e PL/SQL Packages for LOBs and DBFS to perform archive management
on SecureFiles

10-7

Chapter 10
Using PL/SQL (DBMS_LOB Package) to Work With LOBs

PL/SQL Functions and Procedures to Modify LOB Values

Here is a table of DBM5_LOB procedures:

Table 10-4 PL/SQL: DBMS_LOB Procedures to Modify LOB Values

Function/Procedure

Description

APPEND
CONVERTTOBLOB
CONVERTTOCLOB
CoPY

ERASE

FRAGVENT DELETE
FRAGVENT | NSERT
FRAGVENT _MOVE
FRAGVENT REPLACE
LOADFROVFI LE
LOADCLOBFROMFI LE
LOADBLOBFROMFI LE
SETOPTI ONS

TR M

WRI TE

R TEAPPEND

Appends the LOB value to another LOB

Converts a CLOBto a BLOB

Converts a BLOBto a CLCB

Copies all or part of a LOB to another LOB

Erases part of a LOB, starting at a specified offset

Delete the data from the LOB at the given offset for the given length
Insert the given data (< 32KBytes) into the LOB at the given offset
Move the given amount of bytes from the given offset to the new given offset
Replace the data at the given offset with the given data (< 32kBytes)
Load BFI LE data into a persistent LOB

Load character data from a file into a LOB

Load binary data from a file into a LOB

Sets LOB features (deduplication and compression)

Trims the LOB value to the specified shorter length

Writes data to the LOB at a specified offset

Writes data to the end of the LOB

" Note:

When appending data in a buffer to a LOB, use the wri t eappend()
procedure instead of append() to get better performance.

PL/SQL Functions and Procedures for Introspection of LOBs

Table 10-5 PL/SQL: DBMS_LOB Procedures to Read or Examine Internal and External LOB

values

Function/Procedure

Description

COMPARE
CETCHUNKSI ZE

GETLENGTH
GETOPTI ONS

ORACLE

Compares the value of two LOBs

Gets the chunk size used when reading and writing. This only works on
persistent LOBs and does not apply to external LOBs (BFI LEs).

Gets the length of the LOB value.

Returns options (deduplication, compression, encryption) for SecureFiles.

10-8

Chapter 10
Using PL/SQL (DBMS_LOB Package) to Work With LOBs

Table 10-5 (Cont.) PL/SQL: DBMS_LOB Procedures to Read or Examine Internal and External

LOB values

Function/Procedure

Description

GET_STORAGE_LIMT
| NSTR
| SSECUREFI LE

READ
SETOPTI ONS

SUBSTR

Gets the LOB storage limit for the database configuration.
Returns the matching position of the nth occurrence of the pattern in the LOB.

Returns TRUE if the BLOB or CLOB locator passed to it is for a SecureFiles or
FALSE if it is not.
Reads data from the LOB starting at the specified offset.

Sets options (deduplication and compression) for a SecureFiles, overriding the
default LOB column settings. Incurs a server round trip.

Returns part of the LOB value starting at the specified offset.

PL/SQL Operations on Temporary LOBs

Table 10-6 PL/SQL: DBMS_LOB Procedures to Operate on Temporary LOBs
]

Function/Procedure

Description

CREATETEMPORARY
ISTEMPORARY
FREETEMPORARY

Creates a temporary LOB
Checks if a LOB locator refers to a temporary LOB

Frees a temporary LOB

PL/SQL Read-Only Functions and Procedures for BFILES

Table 10-7 PL/SQL: DBMS_LOB Read-Only Procedures for BFILEs
]

Function/Procedure

Description

FI LECLOSE

FI LECLOSEALL
FI LEEXI STS
FI LEGETNAME
FI LEI SOPEN

FI LEOPEN

Closes the file. Use CLOSE() instead.
Closes all previously opened files

Checks if the file exists on the server

Gets the directory object name and file name

Checks if the file was opened using the input BFILE locators. Use
| SOPEN() instead.

Opens a file. Use OPEN() instead.

ORACLE

10-9

Chapter 10
Using OCI to Work With LOBs

PL/SQL Functions and Procedures to Open and Close Internal and
External LOBs

Table 10-8 PL/SQL: DBMS_LOB Procedures to Open and Close Internal and External LOBs
]

Function/Procedure Description
OPEN Opens a LOB
| SOPEN Sees if a LOB is open
CLGCSE Closes a LOB
" See Also:

Opening Persistent LOBs with the OPEN and CLOSE Interfaces for detailed
information about these procedures for specific LOB operations, such as,
| NSERT a row containing a LOB

Using OCI to Work With LOBs

Oracle Call Interface (OCI) LOB functions enable you to access and make changes to
LOBs and to read data from BFI LEs in C.

See Also:

Oracle Call Interface Programmer's Guide chapter "LOB and BFILE
Operations" for the details of all topics discussed in this section.

Prefetching of LOB Data and Length

To improve OCI access of smaller LOBs, LOB data can be prefetched and cached
while also fetching the locator. The OCI driver will fetch the LOB length by default. This
applies to internal LOBs, temporary LOBs, and BFI LEs.

Oracle Database 20c Release, introduces OCl Dat aSer ver Lengt hGet () function. When
using the Data Interface, you can use this function to retrieve LOB length while using
dynamic define callback.

Setting the CSID Parameter for OCI LOB APIs

If you want to read or write data in 2-byte Unicode format, then set the csi d (character
set ID) parameter in OCl LobRead2() and OCl LobWite2() to OCI _UTF16l D.

The csi d parameter indicates the character set id for the buffer parameter. You can
set the csi d parameter to any character set ID. If the csi d parameter is set, then it
overrides the NLS_LANG environment variable.

ORACLE 10-10

Chapter 10
Using OCI to Work With LOBs

¢ See Also:

e Oracle Call Interface Programmer's Guidefor information on the
CCl Uni codeToChar Set () function and details on OCI syntax in general.

e Oracle Database Globalization Support Guidefor detailed information
about implementing applications in different languages.

Fixed-Width and Varying-Width Character Set Rules for OCI

In OCI, for fixed-width client-side character sets, the following rules apply:

ORACLE

CLOBs and NCLOBs: offset and amount parameters are always in characters

BLOBs and BFI LEs: offset and amount parameters are always in bytes

The following rules apply only to varying-width client-side character sets:

Offset parameter:

Regardless of whether the client-side character set is varying-width, the offset
parameter is always as follows:

— CLOBs and NCLOBs: in characters

— BLOBs and BFI LEs: in bytes

Amount parameter:

The amount parameter is always as follows:

— When referring to a server-side LOB: in characters
— When referring to a client-side buffer: in bytes
OCILobFileGetLength():

Regardless of whether the client-side character set is varying-width, the output
length is as follows:

— CLOBs and NCLOBs: in characters

— BLOBs and BFI LEs: in bytes

OCILobRead2():

With client-side character set of varying-width, CLOBs and NCLOBs:

— Input amount is in characters. Input amount refers to the number of
characters to read from the server-side CLOB or NCLOB.

— Output amount is in bytes. Output amount indicates how many bytes were
read into the buffer buf p.

OCILobWrite2(): With client-side character set of varying-width, CLOBs and
NCLOBs:

— Input amount is in bytes. The input amount refers to the number of bytes of
data in the input buffer buf p.

— Output amount is in characters. The output amount refers to the number of
characters written into the server-side CLOB or NCLCB.

10-11

Chapter 10
Using OCI to Work With LOBs

Other Operations

For all other LOB operations, irrespective of the client-side character set, the amunt
parameter is in characters for CLOBs and NCLOBs. These include OCl LobCopy2(),

CCl LobEr ase2(), OCl LobLoadFronFi | €2(), and OCl LobTri n2() . All these operations
refer to the amount of LOB data on the server.

" See Also:

Oracle Database Globalization Support Guide

NCLOBs in OCl

NCLOBs are allowed as parameters in methods.

OCILobLoadFromFile2() Amount Parameter

When using OCl LobLoadFr onFi | e2() you cannot specify anount larger than the length
of the BFI LE. To load the entire BFI LE, you can pass the value returned by
OCl LobGet St orageLim t ().

OCILobRead2() Amount Parameter

To read to the end of a LOB using OCl LobRead?2(), you specify an amount equal to the
value returned by OCl LobGet StorageLimt().

" See Also:
About Reading Data from a LOB

OCILobLocator Pointer Assignment

Special care must be taken when assigning OCl LobLocat or pointers in an OCI
program—using the "=" assignment operator. Pointer assignments create a shallow
copy of the LOB. After the pointer assignment, the source and target LOBs point to the
same copy of data.

These semantics are different from using LOB APIs, such as OCl LobAssi gn() or
OCl LobLocat or Assi gn() to perform assignments. When the these APls are used, the
locators logically point to independent copies of data after assignment.

For temporary LOBs, before performing pointer assignments, you must ensure that
any temporary LOB in the target LOB locator is freed by calling OCl FreeTenporary().
In contrast, when OCl LobLocat or Assi gn() is used, the original temporary LOB in the
target LOB locator variable, if any, is freed automatically before the assignment
happens.

ORACLE 10-12

Chapter 10
Using OCI to Work With LOBs

LOB Locators in Defines and Out-Bind Variables in OCI

Before you reuse a LOB locator in a define or an out-bind variable in a SQL statement,

you

must free any temporary LOB in the existing LOB locator buffer using

OCl FreeTenporary() .

OCI Functions That Operate on BLOBs, CLOBs, NCLOBs, and

BFILES

OCI functions that operate on BLOBs, CLOBs, NCLOBs, and BFI LEs are as follows:

To modify persistent LOBSs, see #unique_277/
unique_277_Connect_42_ G1039025

To read or examine LOB values, see #unique_278/
unique_278 Connect_42_ G1039053

To create or free temporary LOB, or check if Temporary LOB exists, see
#unique_279/unique_279 Connect_42_G1039069

For read only functions on external LOBs (BFI LEs), see #unique_280/
unique_280_Connect_42_G1039085

To operate on LOB locators, see #unique_281/
unique_281 Connect_42_G1039110

To open and close LOBs, see #unique_282/unique_282_Connect_42_G1039151

OCI Functions to Modify Persistent LOB (BLOB, CLOB, and NCLOB)

Values

Table 10-9 OCI Functions to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values

Function/Procedure

Description

OCl LobAppend()

OCl LobArrayWite()
OCl LobCopy2()

OCl LobEr ase2()

Appends LOB value to another LOB.
Writes data using multiple locators in one round trip.
Copies all or part of a LOB to another LOB.

Erases part of a LOB, starting at a specified offset.

CCl LobLoadFr onFi | e2() Loads BFI LE data into a persistent LOB.
COCl LobSet Cont ent Type() Sets a content string in a SecureFiles.

OCl LObSet Opti ons()
OCl LobTri n2()
OCl LobW i te2()

Enables option settings (deduplication and compression) for a SecureFiles.
Truncates a LOB.

Writes data from a buffer into a LOB, overwriting existing data.

CCl LobW i t eAppend2() Writes data from a buffer to the end of the LOB.

ORACLE

10-13

Chapter 10
Using OCI to Work With LOBs

OCI Functions to Read or Examine Persistent LOB and External LOB
(BFILE) Values

Table 10-10 OCI Functions to Read or Examine persistent LOB and external LOB (BFILE)
Values

Function/Procedure Description

OCl LobAr r ayRead() Reads data using multiple locators in one round trip.

COCl LobGet ChunkSi ze() Gets the chunk size used when reading and writing. This works on
persistent LOBs and does not apply to external LOBs (BFI LEs).

OCl LobGet Cont ent Type() Gets the content string for a SecureFiles.

OCl LobCet Lengt h2() Returns the length of a LOB or a BFI LE.

OCl LObGet Opt i ons() Obtains the enabled settings (deduplication, compression, encryption)
for a given SecureFiles.

OCl LobGet St orageLim t () Gets the maximum length of an internal LOB.

OCl LobRead2() Reads a specified portion of a non-NULL LOB or a BFI LE into a buffer.

OCI Functions for Temporary LOBs

Table 10-11 OCI Functions for Temporary LOBs

L ___|]
Function/Procedure Description

CCl LobCr eat eTenporary() Creates a temporary LOB.
OCl Lobl sTenporar y() Sees if a temporary LOB exists.
OCl LobFr eeTenporary() Frees a temporary LOB.

OCI Read-Only Functions for BFILES

Table 10-12 OCI Read-Only Functions for BFILES
. __]

Function/Procedure Description

OCl LobFi | ed ose() Closes an open BFI LE.

OCl LobFi | ed oseAl | () Closes all open BFI LEs.

OCl LobFi | eExi sts() Checks whether a BFI LE exists.
OCl LobFi | eGet Name() Returns the name of a BFI LE.
OCl LobFi | el sOpen() Checks whether a BFI LE is open.
OCl LobFi | eQpen() Opens a BFI LE.

ORACLE 10-14

Chapter 10
Using OCI to Work With LOBs

OCI LOB Locator Functions

Table 10-13 OCI LOB-Locator Functions
]

Function/Procedure Description

OCl LobAssi gn() Assigns one LOB locator to another.

OCl LobChar Set For m() Returns the character set form of a LOB.

CCl LobChar Set 1 d() Returns the character set ID of a LOB.

OCl LobFi | eSet Nange() Sets the name of a BFI LE in a locator.

CCl Lobl sEqual () Checks whether two LOB locators refer to the same LOB.
OCl LobLocatorIslnit() Checks whether a LOB locator is initialized.

Topic
Enter a short description of your topic here (optional).

This is the start of your topic.

OCI Functions to Open and Close Internal and External LOBs

Table 10-14 OCI Functions to Open and Close Internal and External LOBs
]

Function/Procedure Description

CCl LobOpen() Opens a LOB.

CCl Lobl sOpen() Sees if a LOB is open.
CCl Lobd ose() Closes a LOB.

OCI LOB Examples

Further OCI examples are provided in:

e Using LOB APIs
* LOB APIs for BFILE Operations

" See Also:

Oracle Call Interface Programmer's Guide for further OCI demonstration
script listings

ORACLE 10-15

Chapter 10
Using C++ (OCCI) to Work With LOBs

Further Information About OCI

" See Also:

http://wwv. oracl e. com t echnol ogy/ for more information about OCI
features and frequently asked questions.

Using C++ (OCCI) to Work With LOBs

ORACLE

Oracle C++ Call Interface (OCCI) is a C++ API for manipulating data in an Oracle
database. OCCI is organized as an easy-to-use set of C++ classes that enable a C++
program to connect to a database, run SQL statements, insert/update values in
database tables, retrieve results of a query, run stored procedures in the database,
and access metadata of database schema objects. OCCI also provides a seamless
interface to manipulate objects of user-defined types as C++ class instances.

Oracle C++ Call Interface (OCCI) is designed so that you can use OCI and OCCI
together to build applications.

The OCCI API provides the following advantages over JDBC and ODBC:

e OCCI encompasses more Oracle functionality than JDBC. OCCI provides all the
functionality of OCI that JDBC does not provide.

e OCCI provides compiled performance. With compiled programs, the source code
is written as close to the computer as possible. Because JDBC is an interpreted
API, it cannot provide the performance of a compiled API. With an interpreted
program, performance degrades as each line of code must be interpreted
individually into code that is close to the computer.

e OCCI provides memory management with smart pointers. You do not have to be
concerned about managing memory for OCCI objects. This results in robust higher
performance application code.

« Navigational access of OCCI enables you to intuitively access objects and call
methods. Changes to objects persist without writing corresponding SQL
statements. If you use the client side cache, then the navigational interface
performs better than the object interface.

e With respect to ODBC, the OCCI API is simpler to use. Because ODBC is built on
the C language, OCCI has all the advantages C++ provides over C. Moreover,
ODBC has a reputation as being difficult to learn. The OCCI, by contrast, is
designed for ease of use.

You can use OCCI to make changes to an entire persistent LOB, or to pieces of the
beginning, middle, or end of it, as follows:

* For reading from internal and external LOBs (BFI LES)

e For writing to persistent LOBs

10-16

http://www.oracle.com/technology/

Chapter 10
Using C++ (OCCI) to Work With LOBs

OCCI Classes for LOBs

Clob Class

Blob Class

ORACLE

OCCI provides these classes that allow you to use different types of LOB instances as
objects in your C++ application:

* (O ob class to access and modify data stored in internal CLOBs and NCLOBs
» Bl ob class to access and modify data stored in internal BLOBs

e Bfile class to access and read data stored in external LOBs (BFI LES)

See Also:

Syntax information on these classes and details on OCCI in general is
available in theOracle C++ Call Interface Programmer's Guide.

The Clob driver implements a CLOB object using an SQL LOB locator. This means that
a CLOB object contains a logical pointer to the SQL CLOB data rather than the data
itself.

The CLOB interface provides methods for getting the length of an SQL CLOB value, for
materializing a CLOB value on the client, and getting a substring. Methods in the
Resul t Set and St at enent interfaces such as get 0 ob() and set O ob() allow you to
access SQL CLOB values.

¢ See Also:

Oracle C++ Call Interface Programmer's Guide for detailed information on
the Clob class.

Methods in the Resul t Set and St at enent interfaces, such as get Bl ob() and

set Bl ob(), allow you to access SQL BLOB values. The Bl ob interface provides
methods for getting the length of a SQL BLOB value, for materializing a BLOB value on
the client, and for extracting a part of the BLOB.

¢ See Also:

e Oracle C++ Call Interface Programmer's Guide for detailed information
on the Blob class methods and details on instantiating and initializing a
Blob object in your C++ application.

e Oracle Database Globalization Support Guidefor detailed information
about implementing applications in different languages.

10-17

Bfile Class

Chapter 10
Using C++ (OCCI) to Work With LOBs

The Bf i | e class enables you to instantiate a Bf i | e object in your C++ application. You
must then use methods of the Bf i | e class, such as the set Name() method, to initialize
the Bf i | e object which associates the object properties with an object of type BFI LE in
a BFI LE column of the database.

¢ See Also:

Oracle C++ Call Interface Programmer's Guide for detailed information on
the Bf i | e class methods and details on instantiating and initializing an Bf i | e
object in your C++ application.

Fixed-Width Character Set Rules

In OCCI, for fixed-width client-side character sets, these rules apply:
e ob: offset and amount parameters are always in characters
» Bl ob: offset and amount parameters are always in bytes

* Bfile: offset and amount parameters are always in bytes

Varying-Width Character Set Rules

ORACLE

The following rules apply only to varying-width client-side character sets:

e Offset parameter: Regardless of whether the client-side character set is varying-
width, the offset parameter is always as follows:

— Cdob():incharacters
— Blob():in bytes
— Bfile():inbytes
Amount parameter: The amount parameter is always as indicated:
— Cob:in characters, when referring to a server-side LOB
— Bl ob: in bytes, when referring to a client-side buffer
— Bfile:in bytes, when referring to a client-side buffer

* length(): Regardless of whether the client-side character set is varying-width, the
output length is as follows:

— Cob.length():in characters
— Blob.length():in bytes
— Bfile.length():in bytes

* Clob.read() and Blob.read(): With client-side character set of varying-width,
CLOBs and NCLOBs:

— Input amount is in characters. Input amount refers to the number of
characters to read from the server-side CLOB or NCLCB.

10-18

Chapter 10
Using C++ (OCCI) to Work With LOBs

— Output amount is in bytes. Output amount indicates how many bytes were
read into the OCCI buffer parameter, buf f er .

e Clob.write() and Blob.write(): With client-side character set of varying-width,
CLOBs and NCLOBs:

— Input amount is in bytes. Input amount refers to the number of bytes of data
in the OCCI input buffer, buf fer.

— Output amount is in characters. Output amount refers to the number of
characters written into the server-side CLOB or NCLOB.

Offset and Amount Parameters for Other OCCI Operations

For all other OCCI LOB operations, irrespective of the client-side character set, the
amount parameter is in characters for CLOBs and NCLOBs. These include the following:

e Oob.copy()

e (Cob.erase()

e dob.trim)

» For LoadFr onFi | e functionality, overloaded C ob. copy()

All these operations refer to the amount of LOB data on the server.

¢ See also:

Oracle Database Globalization Support Guide

NCLOBs in OCCI

* NCLOBinstances are allowed as parameters in methods

e NCLOB instances are allowed as attributes in object types.

Amount Parameter for OCCI LOB copy() Methods

The copy() method on C ob and Bl ob enables you to load data from a BFI LE. You can
pass one of the following values for the anount parameter to this method:

e An amount smaller than the size of the BFI LE to load a portion of the data
* An amount equal to the size of the BFI LE to load all of the data
* The UBSMAXVAL constant to load all of the BFI LE data

You cannot specify an amount larger than the length of the BFI LE.

Amount Parameter for OCCI read() Operations

The read() method on an d ob, Bl ob, or Bf i | e object, reads data from a BFI LE. You
can pass one of these values for the amount parameter to specify the amount of data
to read:

* An amount smaller than the size of the BFI LE to load a portion of the data

ORACLE 10-19

Chapter 10
Using C++ (OCCI) to Work With LOBs

* An amount equal to the size of the BFI LE to load all of the data
e 0 (zero) to read until the end of the BFI LE in streaming mode

You cannot specify an amount larger than the length of the BFI LE.

Further Information About OCCI

¢ See Also:

e Oracle C++ Call Interface Programmer's Guide

e http://ww. oracl e.comf search for articles and product information
featuring OCCI.

OCCI Methods That Operate on BLOBs, BLOBs, NCLOBs, and
BFILEs

OCCI methods that operate on BLOBs, CLOBs, NCLOBs, and BFI LEs are as follows:
e To modify persistent LOBs, see Table 10-15

* Toread or examine LOB values, see Table 10-16

* For read only methods on external LOBs (BFI LES), see Table 10-17

Other LOB OCCI methods are described in Table 10-18

To open and close LOBs, see Table 10-19

OCCI Methods to Modify Persistent LOB (BLOB, CLOB, and NCLOB)
Values

Table 10-15 OCCI Clob and Blob Methods to Modify Persistent LOB (BLOB, CLOB, and
NCLOB) Values

Function/Procedure Description

Bl ob/ O ob. append() Appends CLOB or BLOB value to another LOB.

Bl ob/ O ob. copy() Copies all or part of a CLOB or BLOB to another LOB.

Bl ob/ O ob. copy() Loads BFI LE data into a persistent LOB.

Bl ob/C ob.trinm) Truncates a CLOB or BLOB.

Bl ob/ Cl ob. write() Writes data from a buffer into a LOB, overwriting existing data.

ORACLE 10-20

http://www.oracle.com/

Chapter 10
Using C++ (OCCI) to Work With LOBs

OCCI Methods to Read or Examine Persistent LOB and BFILE Values

Table 10-16 OCCI Blob/Clob/Bfile Methods to Read or Examine persistent LOB and BFILE
Values

Function/Procedure Description

Bl ob/ O ob. get ChunkSi ze() Gets the chunk size used when reading and writing. This works on
persistent LOBs and does not apply to external LOBs (BFI LEs).

Bl ob/ C ob. get Opt i ons() Obtains settings for existing and newly created LOBs.

Bl ob/ O ob. | engt h() Returns the length of a LOB or a BFI LE.

Bl ob/ O ob. read() Reads a specified portion of a non-NULL LOB or a BFI LE into a buffer.

Bl ob/ Cl ob. set Opt i ons() Enables LOB settings for existing and newly created LOBs.

OCCI Read-Only Methods for BFILES

Table 10-17 OCCI Read-Only Methods for BFILES
|

Function/Procedure Description

Bfile.close() Closes an open BFI LE.
Bfile.fileExists() Checks whether a BFI LE exists.
Bfile.getFileName() Returns the name of a BFI LE.
Bfile.getDirAias() Gets the directory object name.
Bfile.isOpen() Checks whether a BFI LE is open.
Bfile.open() Opens a BFI LE.

Other OCCI LOB Methods

Table 10-18 Other OCCI LOB Methods
]

Methods Description

C ob/ Bl ob/ Bfi | e. operat or=() Assigns one LOB locator to another. Use = or the copy constructor.
Q ob. get Char Set For m() Returns the character set form of a LOB.

C ob. get Char Set 1 d() Returns the character set ID of a LOB.

Bfile.setName() Sets the name of a BFI LE.

Cl ob/ Bl ob/ Bf i | e. operat or==() Checks whether two LOB refer to the same LOB.

Clob/Blob/Bfile.islnitialized() Checks whether a LOB is initialized.

ORACLE 10-21

Chapter 10
Using C/C++ (Pro*C) to Work With LOBs

OCCI Methods to Open and Close Internal and External LOBs

Table 10-19 OCCI Methods to Open and Close Internal and External LOBs

Function/Procedure Description

C ob/ Bl ob/ Bfi | e. Open() Opens a LOB

C ob/ Bl ob/ Bfil e.isOpen() Sees if a LOB is open
Cl ob/ Bl ob/Bfile.dose() Closes a LOB

Using C/C++ (Pro*C) to Work With LOBs

You can make changes to an entire persistent LOB, or to pieces of the beginning,
middle or end of a LOB by using embedded SQL. You can access both internal and
external LOBs for read purposes, and you can write to persistent LOBs.

Embedded SQL statements allow you to access data stored in BLOBs, CLOBs, NCLOBs,
and BFI LEs. These statements are listed in the following tables, and are discussed in
greater detail later in the chapter.

See Also:

Pro*C/C++ Programmer's Guidefor detailed documentation, including syntax,
host variables, host variable types and example code.

Providing an Allocated Input Locator Pointer That Represents LOB

Unlike locators in PL/SQL, locators in Pro*C/C++ are mapped to locator pointers which
are then used to refer to the LOB or BFILE value.

To successfully complete an embedded SQL LOB statement you must do the
following:

1. Provide an allocated input locator pointer that represents a LOB that exists in the
database tablespaces or external file system before you run the statement.

2. SELECT a LOB locator into a LOB locator pointer variable.

3. Use this variable in the embedded SQL LOB statement to access and manipulate
the LOB value.

ORACLE 10-22

Chapter 10
Using C/C++ (Pro*C) to Work With LOBs

" See Also:

APIs for supported LOB operations are described in detail in:
e Operations Specific to Persistent and Temporary LOBs

e Using LOB APIs

e LOB APIs for BFILE Operations

Pro*C/C++ Statements That Operate on BLOBs, CLOBs, NCLOBs,

and BFILES

Pro*C/C++ statements that operate on BLOBs, CLOBs, and NCLOBs are listed in the
following tables:

To modify persistent LOBS, see #unique_305/
unique_305 Connect_42_ G1039287

To read or examine LOB values, see #unique_306/
unique_306_Connect_42_ G1039315

To create or free temporary LOB, or check if Temporary LOB exists, see
#unique_307/unique_307_Connect_42_ G1039331

To operate close and 'see if file exists' functions on BFILEs, see #unique_308/
unique_308 Connect_42_ G1039347

To operate on LOB locators, see #unique_309/
unique_309_Connect_42_G1039363

To open or close LOBs or BFI LEs, see #unique_310/
unique_310_Connect_42_G1039392

Pro*C/C++ Embedded SQL Statements to Modify Persistent LOB

Values

Table 10-20 Pro*C/C++: Embedded SQL Statements to Modify Persistent LOB Values

Statement Description

APPEND Appends a LOB value to another LOB.

corY Copies all or a part of a LOB into another LOB.

ERASE Erases part of a LOB, starting at a specified offset.

LOAD FROMFI LE Loads BFI LE data into a persistent LOB at a specified offset.

TRIM Truncates a LOB.

VRI TE Writes data from a buffer into a LOB at a specified offset.

VRl TE APPEND Writes data from a buffer into a LOB at the end of the LOB.

ORACLE 10-23

Chapter 10
Using C/C++ (Pro*C) to Work With LOBs

Pro*C/C++ Embedded SQL Statements for Introspection of LOBs

Table 10-21 Pro*CIC++: Embedded SQL Statements for Introspection of LOBs
. __]

Statement Description

DESCRI BE [CHUNKSI ZE] Gets the chunk size used when writing. This works for persistent LOBs only. It
does not apply to external LOBs (BFI LEs).

DESCRI BE [LENGTH] Returns the length of a LOB or a BFI LE.

READ reads a specified portion of a non-NULL LOB or a BFI LE into a buffer.

Pro*C/C++ Embedded SQL Statements for Temporary LOBs

Table 10-22 Pro*C/C++: Embedded SQL Statements for Temporary LOBs
]

Statement Description

CREATE TEMPORARY Creates a temporary LOB.

DESCRI BE [| STEMPORARY] Sees if a LOB locator refers to a temporary LOB.
FREE TEMPORARY Frees a temporary LOB.

Pro*C/C++ Embedded SQL Statements for BFILES

Table 10-23 Pro*C/C++: Embedded SQL Statements for BFILES
]

Statement Description

FI LE CLOSE ALL Closes all open BFI LEs.

DESCRI BE [FI LEEXI STS] Checks whether a BFI LE exists.

DESCRI BE Returns the directory object name and filename of a BFI LE.

[DI RECTCRY, FI LENAME]

Pro*C/C++ Embedded SQL Statements for LOB Locators

Table 10-24 Pro*C/C++ Embedded SQL Statements for LOB Locators
]

Statement Description
ASSI GN Assigns one LOB locator to another.
FI LE SET Sets the directory object name and filename of a BFI LE in a locator.

ORACLE 10-24

Chapter 10
Using COBOL (Pro*COBOL) to Work With LOBs

Pro*C/C++ Embedded SQL Statements to Open and Close LOBs

Table 10-25 Pro*C/C++ Embedded SQL Statements to Open and Close Persistent LOBs and
External LOBs (BFILES)

Statement

Description

CPEN
DESCRI BE [| SOPEN]
CLOSE

Opens a LOB or BFI LE.
Sees if a LOB or BFI LE is open.
Closes a LOB or BFI LE.

Using COBOL (Pro*COBOL) to Work With LOBs

You can make changes to an entire persistent LOB, or to pieces of the beginning,
middle or end of it by using embedded SQL. You can access both internal and
external LOBs for read purposes, and you can also write to persistent LOBs.

Embedded SQL statements allow you to access data stored in BLOBs, CLOBs, NCLOBs,
and BFI LEs. These statements are listed in the following tables, and are discussed in
greater detail later in the manual.

Providing an Allocated Input Locator Pointer That Represents LOB

Unlike locators in PL/SQL, locators in Pro*COBOL are mapped to locator pointers
which are then used to refer to the LOB or BFILE value. For the successful completion
of an embedded SQL LOB statement you must perform the following:

1.

Provide an allocated input locator pointer that represents a LOB that exists in the
database tablespaces or external file system before you run the statement.

SELECT a LOB locator into a LOB locator pointer variable

Use this variable in an embedded SQL LOB statement to access and manipulate
the LOB value.

¢ See Also:
APIs for supported LOB operations are described in detail in:
e Operations Specific to Persistent and Temporary LOBs
e Using LOB APIs
e LOB APIs for BFILE Operations

Where the Pro*COBOL interface does not supply the required functionality, you can
call OCl using C. Such an example is not provided here because such programs are
operating system dependent.

ORACLE

10-25

Chapter 10
Using COBOL (Pro*COBOL) to Work With LOBs

¢ See Also:

Pro*COBOL Programmer's Guidefor detailed documentation, including
syntax, host variables, host variable types, and example code.

Pro*COBOL Statements That Operate on BLOBs, CLOBs, NCLOBs,

and BFILES

The following Pro*xCOBOL statements operate on BLOBs, CLOBs, NCLOBs, and
BFILEs:

To modify persistent LOBS, see #unique_313/
unique_313 Connect_42_ G1039412

To read or examine internal and external LOB values, see #unique_314/
unique_314 Connect_42_ G1039440

To create or free temporary LOB, or check LOB locator, see #unique_315/
unique_315 Connect_42_ G1039456

To operate close and 'see if file exists' functions on BFI LEs, see #unique_316/
unique_316_Connect_42_G1039472

To operate on LOB locators, see #unique_317/
unique_317_Connect_42_G1039488

To open or close persistent LOBs or BFI LEs, see #unique_318/
unique_318 Connect_42_ G1039517

Pro*COBOL Embedded SQL Statements to Modify Persistent LOB

Values

Table 10-26 Pro*COBOL Embedded SQL Statements to Modify LOB Values

Statement Description

APPEND Appends a LOB value to another LOB.

coPY Copies all or part of a LOB into another LOB.

ERASE Erases part of a LOB, starting at a specified offset.

LOAD FROMFI LE Loads BFI LE data into a persistent LOB at a specified offset.
TRIM Truncates a LOB.

VRI TE Writes data from a buffer into a LOB at a specified offset

VRl TE APPEND Writes data from a buffer into a LOB at the end of the LOB.

ORACLE

10-26

Chapter 10
Using COBOL (Pro*COBOL) to Work With LOBs

Pro*COBOL Embedded SQL Statements for Introspection of LOBs

Table 10-27 Pro*COBOL Embedded SQL Statements for Introspection of LOBs
. __]

Statement Description

DESCRI BE [CHUNKSI ZE] Gets the Chunk size used when writing.

DESCRI BE [LENGTH| Returns the length of a LOB or a BFI LE.

READ Reads a specified portion of a non-NULL LOB or a BFI LE into a buffer.

Pro*COBOL Embedded SQL Statements for Temporary LOBSs

Table 10-28 Pro*COBOL Embedded SQL Statements for Temporary LOBs
]

Statement Description

CREATE TEMPORARY Creates a temporary LOB.

DESCRI BE [| STEMPORARY] Sees if a LOB locator refers to a temporary LOB.
FREE TEMPORARY Frees a temporary LOB.

Pro*COBOL Embedded SQL Statements for BFILES

Table 10-29 Pro*COBOL Embedded SQL Statements for BFILES
]

Statement Description

FI LE CLOSE ALL Closes all open BFI LEs.

DESCRI BE [FI LEEXI STS] Checks whether a BFI LE exists.

DESCRI BE [DI RECTORY, Returns the directory object name and filename of a BFI LE.
FI LENAME]

Pro*COBOL Embedded SQL Statements for LOB Locators

Table 10-30 Pro*COBOL Embedded SQL Statements for LOB Locator Statements
]

Statement Description
ASSI GN Assigns one LOB locator to another.
FI LE SET Sets the directory object name and filename of a BFI LE in a locator.

ORACLE 10-27

Chapter 10
Using Java (JDBC) to Work With LOBs

Pro*COBOL Embedded SQL Statements for Opening and Closing
LOBs and BFILES

Table 10-31 Pro*COBOL Embedded SQL Statements for Opening and Closing Persistent LOBs
and BFILEs

Statement Description

OPEN Opens a LOB or BFI LE.

DESCRI BE[| SOPEN| Sees if a LOB or BFI LE is open.

CLOSE Closes a LOB or BFI LE.

Using Java (JDBC) to Work With LOBs

You can perform the following tasks on LOBs with Java (JDBC):

e Modifying Internal Persistent LOBs Using Java

e Reading Internal Persistent LOBs and External LOBs (BFILEs) With Java
e Calling DBMS_LOB Package from Java (JDBC)

e Referencing LOBs Using Java (JDBC)

e Create and Manipulate Temporary LOBs and Store Them in Tables as Permanent
LOBs. See JDBC Temporary LOB APIs

Modifying Internal Persistent LOBs Using Java

You can make changes to an entire persistent LOB, or to pieces of the beginning,
middle, or end of a persistent LOB in Java by means of the JDBC API using the
classes:

e oracle.sqgl .BLOB
e oracle.sqgl.CLOB

These classes implement j ava. sql . Bl ob and j ava. sql . O ob interfaces according to
the JDBC 3.0 specification, which has methods for LOB modification. They also
include legacy Oracle proprietary methods for LOB modification. These legacy
methods are marked as deprecated.

Starting in Oracle Database Release 11.1, the minimum supported version of the JDK
is JDK5. To use JDKS5, place oj dbcb. j ar in your CLASSPATH. To use JDK®6, place

oj dbc6. j ar in your CLASSPATH. oj dbc5. j ar supports the JDBC 3.0 specification and
oj dbc6. j ar supports the JIDBC4.0 specification which is new with JDK6.

Reading Internal Persistent LOBs and External LOBs (BFILES) With

Java

ORACLE

With JDBC you can use Java to read both internal persistent LOBs and external LOBs
(BFI LEs).

10-28

Chapter 10
Using Java (JDBC) to Work With LOBs

BLOB, CLOB, and BFILE Classes

* BLOBand CLCB Classes: In JDBC theses classes provide methods for performing
operations on large objects in the database including BLOB and CLOB data types.

e BFILE Class: In JDBC this class provides methods for performing operations on
BFI LE data in the database.

The BLOB, CLOB, and BFI LE classes encapsulate LOB locators, so you do not deal with
locators but instead use methods and properties provided to perform operations and
get state information.

Calling DBMS_LOB Package from Java (JDBC)

Any LOB functionality not provided by these classes can be accessed by a call to the
PL/SQL DBMS_LOB package. This technique is used repeatedly in the examples
throughout this manual.

Prefetching LOBs to Improve Performance

The number of server round trips can be reduced by prefetching part of the data along
with the LOB locator during the fetch.

The SELECT parse, execution, and fetch occurs in one round trip. For large LOBs
(larger than five times the prefetch size) less improvement is seen.

To configure the prefetch size, a connection property,

oracl e.jdbc. defaul t LobPr ef et chSi ze, defined as a constant in

oracle.jdbc. O acl eConnecti on can be used. Values can be -1 to disable prefetching,
0 to enable prefetching for metadata only, or any value greater than 0 which
represents the number of bytes for BLOBs and characters for CLOBs, to be prefetched
along with the locator during fetch operations.

You can change the prefetch size for a particular statement by using a method defined
inoracl e.jdbc. Oracl eStat enent :

voi d set LobPrefetchSize(int size) throws SQLException;

The statement level setting overrides the setting at the connection level. This setting
can also be overriden at the column level through the extended def i neCol urmType
method, where the size represents the number of bytes (or characters for CLOB) to
prefetch. The possible values are the same as for the connection property. The type
must be set to Oracl eTypes. CLOB for a CLOB column and Or acl eTypes. BLOB for a BLOB
column. This method throws SQLExcept i on if the value is less than -1. To complement
the statement there is in oracl e. j dbc. Oracl eSt at enent :

int getLobPrefetchSize();

Zero-Copy Input/Output for SecureFiles to Improve Performance

ORACLE

To improve the performance of SecureFiles, there is a Zero-copy Input/Output protocol
on the server that is only available to network clients that support the new Net NS Data
transfer protocol.

To determine if a LOB is a SecureFiles or not, use the method

10-29

Chapter 10
Using Java (JDBC) to Work With LOBs

public bool ean isSecureFile() throws SQLException

If it is a SecureFiles, TRUE is returned.

Use this thin connection property to disable (by setting to FALSE) the Zero-copy Input/
Output protocol:

oracl e. net. useZer oCopyl O

Zero-Copy Input/Output on the Server

Oracle Net Services is now able to use data buffers provided by the users of Oracle
Net Services without transferring the data into or out of its local buffers.

The network buffers (at the NS layer) are bypassed and internal lob buffers are directly
written on the network. The same applies to buffer reads.

This feature is only available to network clients that support the new NS Data packet
(this is negotiated during the NS handshake). The thin driver supports the new NS
protocol so that the server can use the zero-copy protocol and JavaNet exposes the
zero-copy 10 mechanism to the upper layer so that data copies are no longer required
in the thin driver code.

Zero-Copy Input/Output in the JDBC Thin Driver

When you call the BLOB. get Byt es(l ong pos, int length, byte[] buffer) API, the
buffer provided is used at the JavaNet layer to read the bytes from the socket.

The data is retrieved in one single round trip. Similarly, during a write operation, when
you call BLOB. set Byt es(1 ong pos, byte[] bytes), the buffer is directly written on the
network at the JavaNet layer. So the data is written in one single round trip. The user
buffer is sent as a whole.

JDBC-OCI Driver Considerations

The JDBC-OCI driver supports Zero-copy Input/Output in the server and in the
network layer.

Referencing LOBs Using Java (JDBC)

You can get a reference to any of the preceding LOBs in the following two ways:
* Asacolumn of an O acl eResul t Set

* Asan QUT type PL/SQL parameter from an Or acl ePr epar edSt at emrent

Using OracleResultSet: BLOB and CLOB Objects Retrieved

When BLOB and CLOB objects are retrieved as a part of an Or acl eResul t Set , these
objects represent LOB locators of the currently selected row.

If the current row changes due to a move operation, for example, r set .next (), then the
retrieved locator still refers to the original LOB row.

To retrieve the locator for the most current row, you must call get BLOB(), get CLOB(),
or get BFI LE() on the Oracl eResul t Set each time a move operation is made
depending on whether the instance is a BLOB, CLOB or BFI LE.

ORACLE 10-30

Chapter 10
Using Java (JDBC) to Work With LOBs

JDBC Syntax References and Further Information

For further JDBC syntax and information about using JDBC with LOBs:

¢ See Also:

e Oracle Database JDBC Developer's Guide,for detailed documentation,
including parameters, parameter types, return values, and example
code.

e http://wwv oracl e.conftechnol ogy/

JDBC Methods for Operating on LOBs

The following JDBC methods operate on BLOBs, CLOBs, and BFI LEs:

ORACLE

BLOBs:

— To modify BLOB values, see #unique_333/
unique_333_Connect_42_G1039682

— To read or examine BLOB values, see #unique_334/
unique_334 Connect_42_G1039692

— For streaming BLOB data, see Table 10-34

— Temporary BLOBs: Creating, checking if BLOB is open, and freeing. See
#unique_336/unique_336_Connect_42_(G1039847

— Opening, closing, and checking if BLOB is open, see #unique_336/
unique_336_Connect_42_ G1039847

— Truncating BLOBs, see #unique_337/unique_337_Connect_42_ G1039898
— BLOB streaming API, see #unique_338/unique_338_Connect_42_G1039922
CLOBs:

— To read or examine CLOB values, see #unique_339/
unique_339 Connect_42 G1039743

— For streaming CLOB data, see Table 10-37
— To modify CLOBs, see #unique_338/unique_338_Connect 42 (G1039922
Temporary CLOBs:

— Opening, closing, and checking if CLOB is open, see #unique_341/
unique_341_Connect_42_G1039863

— Truncating CLOBs, see #unique_342/unique_342_Connect_42_G1039908
— CLOB streaming API, see #unique_343/unique_343_ Connect_42 G1039935
BFI LEs:

— To read or examine BFI LEs, see #unique_344/
unique_344 Connect_42_ G1039790

10-31

http://www.oracle.com/technology/

Chapter 10
Using Java (JDBC) to Work With LOBs

— For streaming BFI LE data, see Table 10-39

— Opening, closing, and checking if BFI LE is open, see #unique_346/
unique_346_Connect_42_G1039879

— BFILE streaming API, see #unique_347/unique_347 Connect_42_ G1039954
JDBC oracle.sgl.BLOB Methods to Modify BLOB Values

Table 10-32 JDBC oracle.sql.BLOB Methods To Modify BLOB Values

Method Description
int setBytes(long, byte[]) Inserts the byte array into the BLOB, starting at the
given offset

JDBC oracle.sgl.BLOB Methods to Read or Examine BLOB Values

Table 10-33 JDBC oracle.sql.BLOB Methods to Read or Examine BLOB Values

Method Description

byte[] getBytes(long, int) Gets the contents of the LOB as an array of bytes,
given an offset

long position(byte[],!long) Finds the given byte array within the LOB, given an
offset

[ong position(Blob,|ong) Finds the given BLOB within the LOB

public bool ean equal s(java.lang. Obj ect) Compares this LOB with another. Compares the LOB
locators.

public long length() Returns the length of the LOB

public int getChunkSize() Returns the ChunkSi ze of the LOB

JDBC oracle.sql.BLOB Methods and Properties for Streaming BLOB
Data

Table 10-34 JDBC oracle.sql.BLOB Methods and Properties for Streaming BLOB Data
|

Method Description
public java.io.lnputStream getBi naryStrean()) Streams the LOB as a binary stream
public java.io.QutputStream setBinaryStrean() Retrieves a stream that can be used to

write to the BLOB value that this Bl ob
object represents

ORACLE 10-32

Chapter 10
Using Java (JDBC) to Work With LOBs

JDBC oracle.sgl.CLOB Methods to Modify CLOB Values

Table 10-35 JDBC oracle.sql.CLOB Methods to Modify CLOB Values

Method

Description

int setString(long, java.lang.String)

int putChars(long, char[])

JDBC 3.0: Writes the given Java String to the CLOB
value that this Cl ob object designates at the position
pos.

Inserts the character array into the LOB, starting at the
given offset

JDBC oracle.sgl.CLOB Methods to Read or Examine CLOB Value

Table 10-36 JDBC oracle.sql.CLOB Methods to Read or Examine CLOB Values

Method

Description

java.lang. String get SubString(long, int)
int getChars(long, int, char[])

long position(java.lang.String, |ong)

[ong position(oracle.jdbc2.dob, |ong)
long | ength()

i nt get ChunkSi ze()

Returns a substring of the LOB as a string

Reads a subset of the LOB into a character array
Finds the given String within the LOB, given an offset
Finds the given CLOB within the LOB, given an offset
Returns the length of the LOB

Returns the ChunkSi ze of the LOB

JDBC oracle.sgl.CLOB Methods and Properties for Streaming CLOB

Data

Table 10-37 JDBC oracle.sql.CLOB Methods and Properties for Streaming CLOB Data

Method

Description

java.io. I nputStream getAscii Stream)

java.io. Qutput Stream set Ascii Strean(! ong pos)

java.io. Reader get CharacterStrean()
java.io.Witer setCharacterStrean(long pos)

Implements the O ob interface method. Gets the
CLOB value designated by this Cl ob object as a
stream of ASCII bytes

JDBC 3.0: Retrieves a stream to be used to write
ASCII characters to the CLOB value that this Cl ob
object represents, starting at position pos

Reads the CLOB as a character stream

JDBC 3.0: Retrieves a stream to be used to write
Unicode characters to the CLOB value that this
Q ob object represents, starting at position pos

ORACLE

10-33

Chapter 10
Using Java (JDBC) to Work With LOBs

JDBC oracle.sgl.BFILE Methods to Read or Examine External LOB
(BFILE) Values

Table 10-38 JDBC oracle.sql.BFILE Methods to Read or Examine External LOB (BFILE) Values
- __]

Method Description

byte[] getBytes(long, int) Cets the contents of the BFI LE as an array of bytes,
given an offset

int getBytes(long, int, byte[]) Reads a subset of the BFI LE into a byte array

 ong position(oracle.sql.BFILE, |ong) Finds the first appearance of the given BFI LE
contents within the LOB, from the given offset

long position(byte[], |ong) Finds the first appearance of the given byte array
within the BFI LE, from the given offset

ong | ength() Returns the length of the BFILE

bool ean fil eExists() Checks if the operating system file referenced by this
BFI LE exists

public void openFile() Opens the operating system file referenced by this
BFI LE

public void closeFile() Cl oses the operating systemfile
referenced by this BFILE

public bool ean isFileQpen() Checks if this BFI LE is open

public java.lang. String getDirAlias() Gets the directory object name for this
BFI LE

public java.lang. String getName() Gets the file name referenced by this
BFI LE

JDBC oracle.sgl.BFILE Methods and Properties for Streaming BFILE
Data

Table 10-39 JDBC oracle.sql.BFILE Methods and Properties for Streaming BFILE Data

__|]
Method Description

public java.io.|lnputStream getBi naryStream() Reads t he BFI LE as a binary stream

JDBC Temporary LOB APIs

Oracle Database JDBC drivers contain APIs to create and close temporary LOBSs.
These APIs can replace workarounds that use the following procedures from the
DBM5_LOB PL/SQL package in prior releases:

« DBMS_LOB. createTenporary()
-+ DBMS_LOB.isTenporary()
< DBMS_LOB.freeTenporary()

ORACLE 10-34

Chapter 10
Using Java (JDBC) to Work With LOBs

Table 10-40 JDBC: Temporary BLOB APIs

Methods Description

public static BLOB createTenporary(Connection conn, Creates a temporary BLOB

bool ean cache, int duration) throws SQLException

public static bool ean isTenporary(BLOB bl ob) Checks if the specified BLOB locator refers

throws SQLException to a temporary BLOB

public bool ean isTenporary() throws SQLException Checks if the current BLOB locator refers
to a temporary BLOB

public static void freeTenporary(BLOB tenp_bl ob) Frees the specified temporary BLOB

throws SQLException

public void freeTenmporary() throws SQLException Frees the temporary BLOB

Table 10-41 JDBC: Temporary CLOB APIs

Methods Description

public static CLOB createTenporary(Connection conn, Creates a temporary CLOB

bool ean cache, int duration) throws SQ.Exception

public static boolean isTenporary(CLOB cl ob) Checks if the specified CLOB locator

throws SQLException refers to a temporary CLOB

public bool ean isTenporary() throws SQ.Exception Checks if the current CLOB locator
refers to a temporary CLOB

public static void freeTenporary(CLOB tenp_cl ob) Frees the specified temporary CLOB

throws SQLException

public void freeTenporary() throws SQLException Frees the temporary CLOB

JDBC: Opening and Closing LOBs

oracl e. sqgl . CLOB class is the Oracle JDBC driver implementation of standard JDBC
j ava. sqgl . d ob interface. Table 10-41 lists the Oracle extension APIs in
oracl e. sql . CLOB for accessing temporary CLOBS.

Oracle Database JDBC drivers contain APIs to explicitly open and close LOBs. These
APIs replace previous techniques that use DBVMS _LOB. open() and DBMS _LOB. ¢l ose().

JDBC: Opening and Closing BLOBs

oracl e. sqgl . BLOB class is the Oracle JDBC driver implementation of standard JDBC
java.sql.Blob interface. Table 10-42 lists the Oracle extension APIs in
oracl e. sql . BLOB that open and close BLOBs.

ORACLE 10-35

Chapter 10
Using Java (JDBC) to Work With LOBs

Table 10-42 JDBC: Opening and Closing BLOBs

Methods Description

public void open(int node) throws SQLException Opens the BLOB
public bool ean i sQpen() throws SQLException Sees if the BLOB is open
public void close() throws SQ.Exception Closes the BLOB

Opening the BLOB Using JDBC

To open a BLOB, your JDBC application can use the open method as defined in
oracl e. sqgl . BLOB class as follows:

/**

* Open a BLOB in the indicated node. Valid nodes include MODE_READONLY,
* and MODE_READWRITE. It is an error to open the sane LOB twice.

*|

public void open (int mode) throws SQLException

Possible values of the mode parameter are:

public static final int MODE_READONLY
public static final int MODE_READWRI TE

Each call to open opens the BLOB. For example:

BLOB blob = ...
bl ob. open (BLOB. MODE_READVRI TE) ;

Checking If the BLOB Is Open Using JDBC

To see if a BLOB is opened, your JDBC application can use the i sOQpen method defined
in oracle.sgl.BLOB. The return Boolean value indicates whether the BLOB has been
previously opened or not. The i sOpen method is defined as follows:

/**

* Check whether the BLOB is opened.

* @eturn true if the LOB is opened.

*/

public bool ean isOpen () throws SQLException

The usage example is:

BLOB blob = ...
/] See if the BLOB is opened
bool ean i sCpen = bl ob.isOpen ();

Closing the BLOB Using JDBC

ORACLE

To close a BLOB, your JDBC application can use the close method defined in
oracl e. sqgl . BLOB. The close APl is defined as follows:

/**

* Close a previously opened BLOB.
*/
public void close () throws SQLException

10-36

Chapter 10
Using Java (JDBC) to Work With LOBs

The usage example is:

BLOB blob = ...
/'l close the BLOB
bl ob. cl ose ();

JDBC: Opening and Closing CLOBs

Class oracl e. sql . CLOB is the Oracle JDBC driver implementation of the standard
JDBC j ava. sql . d ob interface. Table 10-43 lists the Oracle extension APIs in
oracl e. sql . CLOBto open and close CLOBs.

Table 10-43 JDBC: Opening and Closing CLOBs
]

Methods Description

public void open(int node) throws SQLException Open the CLOB

public bool ean isOpen() throws SQLException See if the CLOB is opened
public void close() throws SQ.Exception Close the CLOB

Opening the CLOB Using JDBC

To open a CLOB, your JDBC application can use the open method defined in
oracl e. sql . CLOB class as follows:

/**

* QOpen a CLOB in the indicated node. Valid nodes include MODE_READONLY,
* and MODE_READWRITE. It is an error to open the sane LOB twice.

*/

public void open (int mode) throws SQLException

The possible values of the mode parameter are:

public static final int MODE_READONLY
public static final int MODE_READWRI TE

Each call to open opens the CLOB. For example,

CLOB clob = ...
cl ob. open (CLOB. MODE_READWRI TE) ;

Checking If the CLOB Is Open Using JDBC

ORACLE

To see if a CLOB is opened, your JDBC application can use the i sOpen method defined
in oracle.sql.CLOB. The return Boolean value indicates whether the CLOB has been
previously opened or not. The i sOpen method is defined as follows:

/**

* Check whether the CLOB i s opened.
* @eturn true if the LOB is opened.
*/
public bool ean isOpen () throws SQLException

The usage example is:

10-37

Chapter 10
Using Java (JDBC) to Work With LOBs

CLOB clob = ...
Il See if the CLOB is opened
bool ean i sOpen = clob.isCpen ();

Closing the CLOB Using JDBC

To close a CLOB, the JDBC application can use the close method defined in
oracl e. sql . CLOB. The close APl is defined as follows:

/**

* Close a previously opened CLOB.
*|
public void close () throws SQLException

The usage example is:

CLOB clob = ...
/I close the CLOB
clob.close ();

JDBC: Opening and Closing BFILES

oracl e. sql . BFI LE class wraps the database BFI LE object. Table 10-44 lists the
Oracle extension APIs in or acl e. sql . BFI LE for opening and closing BFI LEs.

Table 10-44 JDBC API Extensions for Opening and Closing BFILEs
]

Methods Description

public void open() throws SQLException Opens the BFI LE

public void open(int node) throws SQLException Opens the BFI LE

public bool ean i sCpen() throws SQLException Checks if the BFI LE is open
public void close() throws SQ.Exception Closes the BFI LE
Opening BFILEs

ORACLE

To open a BFI LE, your JDBC application can use the OPEN method defined in
oracl e. sql . BFI LE class as follows:

/**

* (pen a external LOB in the read-only node. It is an error
* to open the same LOB twice.

*|

public void open () throws SQLException

/**

* (pen a external LOB in the indicated node. Valid nodes include
* MODE_READONLY only. It is an error to open the same

* LOB twice.

*|

public void open (int node) throws SQLException

The only possible value of the mode parameter is:

public static final int MODE_READONLY

10-38

Chapter 10
Using Java (JDBC) to Work With LOBs

Each call to open opens the BFI LE. For example,

BFILE bfile = ...
bfile.open ();

Checking If the BFILE Is Open

To see if a BFI LE is opened, your JDBC application can use the i sOpen method
defined in or acl e. sql . BFI LE. The return Boolean value indicates whether the BFILE
has been previously opened or not. The i sOpen method is defined as follows:

/**

* Check whether the BFILE is opened.

* @eturn true if the LOB is opened.

*/

public bool ean isCpen () throws SQLException

The usage example is:

BFILE bfile = ...
Il See if the BFILE is opened
bool ean i sOpen = bfile.isOpen ();

Closing the BFILE

To close a BFI LE, your JDBC application can use the cl ose method defined in
oracl e. sql . BFILE. The cl ose APl is defined as follows:

/**

* Close a previously opened BFILE.

*)

public void close () throws SQ.Exception

The usage example is --

BFILE bfile = ...
/1 close the BFILE
bfile.close ();

Usage Example (OpenCloseLob.java)

/*

* This sanpl e shows how to open/close BLOB and CLOB.
*

/

/1 You nust inport the java.sql package to use JDBC
inport java.sql.*;

/1 You nust inport the oracle.sql package to use oracle.sql.BLOB
import oracle.sql.*;

class Opend oselob

{
public static void main (String args [])
throws SQLException

/'l Load the Oracle JDBC driver
DriverManager.registerDriver(new oracle.jdbc.driver.OacleDriver());

ORACLE 10-39

ORACLE

Chapter 10

Using Java (JDBC) to Work With LOBs

String url = "jdbc:oracle:oci8 @;
try {
String urll = System get Property("JDBC URL");
if (urll !'=null)
url =url1;
} catch (Exception e) {
Il 1f there is any security exception, ignore it
/1 and use the defaul t

}

/1 Connect to the database
Connection conn =

Driver Manager. get Connection (url, "scott", "password");

/I It is faster when auto commt is off
conn. set AutoCommit (fal se);

Il Create a Statenent
Statenent stnt = conn.createStatenent ();

try
{

stnt.execute ("drop table basic_lob_table");

}
catch (SQ.Exception e)
{

}

/] Create a table containing a BLOB and a CLOB

/1 An exception could be raised here if the table did not exist.

stnt.execute ("create table basic_|lob_table (x varchar2 (30), b blob, ¢ clob)");

/| Popul ate the table
stnt. execute (
"insert into basic_lob_table val ues"

+" ('one', '010101010101010101010101010101", 'onetwothreefour')");

/1 Select the |obs

Resul t Set rset = stnt.executeQuery ("select * frombasic_|ob_table");

while (rset.next ())

{
Il CGet the |obs
BLOB bl ob = (BLOB) rset.getChject (2);
CLOB clob = (CLOB) rset.getvject (3);

/1 Open the | obs

Systemout.printin ("Cpen the |obs");
bl ob. open (BLOB. MODE_READVRI TE) ;

cl ob. open (CLOB. MODE_READWRI TE) ;

Il Check if the | obs are opened

Systemout.printin ("blob.isCpen()="+bl ob.isOpen());
Systemout.printin ("clob.isCOpen()="+clob.isOpen());

Il Cose the | obs

Systemout.printin ("Close the |obs");
bl ob. cl ose ();

clob.close ();

Il Check if the |obs are opened

Systemout.printin ("blob.isCpen()="+bl ob.isOpen());
Systemout.printin ("clob.isCOpen()="+clob.isOpen());

10-40

Chapter 10
Using Java (JDBC) to Work With LOBs

}

/1 Oose the Result Set
rset.close ();

/1 dose the Statement
stnt.close ();

/1 Cose the connection
conn. close ();

}
}

Truncating LOBs Using JDBC

Oracle Database JDBC drivers contain APIs to truncate persistent LOBs. These APIs
replace previous techniques that used DBMS_LOB. trimn().

JDBC: Truncating BLOBs

oracl e. sql . BLOB class is Oracle JDBC driver implementation of the standard JDBC
j ava. sqgl . Bl ob interface. Table 10-45 lists the Oracle extension API in
oracl e. sqgl . BLOB that truncates BLOBs.

Table 10-45 JDBC: Truncating BLOBs

___|
Methods Description

public void truncate(long new en) throws SQLException Truncates the BLOB

The truncate API is defined as follows:
/**

*Truncate the value of the BLOB to the length you specify in the new en paraneter.
* @aramnew en the new | ength of the BLOB.

*/

public void truncate (long new en) throws SQLException

The new en parameter specifies the new length of the BLOB.

JDBC: Truncating CLOBs

oracl e. sqgl . CLOB class is the Oracle JDBC driver implementation of standard JDBC
j ava. sqgl . d ob interface. Table 10-46 lists the Oracle extension API in
oracl e. sqgl . CLOB that truncates CLOBs.

Table 10-46 JDBC: Truncating CLOBs

___|]
Methods Description

public void truncate(long new en) throws SQLException Truncates the CLOB

The truncate API is defined as follows:
/**

*Truncate the value of the CLOB to the length you specify in the new en paraneter.

ORACLE 10-41

Chapter 10
Using Java (JDBC) to Work With LOBs

* @aramnew en the new | ength of the CLOB.
*/
public void truncate (long new en) throws SQLException

The new en parameter specifies the new length of the CLOB.

¢ See:

"About Trimming LOB Data", for an example.

JDBC BLOB Streaming APIs

The JDBC interface provided with the database includes LOB streaming APIs that
enable you to read from or write to a LOB at the requested position from a Java
stream.

The or acl e. sql . BLOB class implements the standard JDBC j ava. sql . Bl ob interface.
Table 10-47 lists BLOB Streaming APIs.

Table 10-47 JDBC: BLOB Streaming APIs
|

Methods

Description

public java.io.CQutputStream JDBC 3.0: Retrieves a stream that can

setBinaryStream (1 ong pos) throws SQLException

be used to write to the BLOB value that
this Bl ob object represents, starting at
position pos

public java.io.lnputStream JDBC 3.0: Retrieves a stream that can

get BinaryStream() throws SQLException

be used to read the BLOB value that this
Bl ob object represents, starting at the
beginning

public java.io.lnputStream Oracle extension: Retrieves a stream

get Bi naryStrean(| ong pos) throws SQLException

that can be used to read the BLOB value
that this Bl 0b object represents, starting
at position pos

ORACLE

These APIs are defined as follows:
/**

* Wite to the BLOB froma streamat the requested position.

*

* @arampos is the position data to be put.

* @eturn a output streamto wite data to the BLOB

*/

public java.io.QutputStream setBinaryStrean(long pos) throws SQLException

/**

* Read fromthe BLOB as a streamat the requested position.

*

* @arampos is the position data to be read.

* @eturn a output streamto wite data to the BLOB

*/

public java.io.lnputStream getBinaryStrean(long pos) throws SQLException

10-42

Chapter 10
Using Java (JDBC) to Work With LOBs

JDBC CLOB Streaming APIs

The oracl e. sgl . CLOB class is the Oracle JDBC driver implementation of standard
JDBC j ava. sql . d ob interface. Table 10-48 lists the CLOB streaming APIs.

Table 10-48 JDBC: CLOB Streaming APIs

___|]
Methods Description

public java.io.CQutputStream JDBC 3.0: Retrieves a stream to be used

set Ascii Stream (I ong pos) throws SQLException to write ASCII characters to the CLOB
value that this Cl ob object represents,

starting at position pos
public java.io.Witer JDBC 3.0: Retrieves a stream to be used

set CharacterStream (I ong pos) throws SQLException to write Unicode characters to the CLOB
value that this Cl ob object represents,

starting, at position pos
public java.io.lnputStream JDBC 3.0: Retrieves a stream that can be

et Ascii Strea throws SOLException used to read ASCII characters from the
g) Q P CLOB value that this Cl ob object

represents, starting at the beginning
public java.io.lnputStream Oracle extension: Retrieves a stream that

et Asci i Strean(! on 0s) throws SOLExcention can be used to read ASCII characters
g m g pos) o2 P from the CLOB value that this C ob object

represents, starting at position pos

public java.io.Reader JDBC 3.0: Retrieves a stream that can be

et Char act er St r ea throws SOLException used to read Unicode characters from the
g ") Q P CLOB value that this C ob object

represents, starting at the beginning
public java.io.Reader Oracle extension: Retrieves a stream that

et Charact er Strean{l ong pos) throws SQLException can be used to read Unicode characters
g (i ong pos) Q P from the CLOB value that this Cl ob object

represents, starting at position pos

These APIs are defined as follows:
/**
* Wite to the CLOB froma streamat the requested position.
* @arampos is the position data to be put.
* @eturn a output streamto wite data to the CLOB
*|
public java.io.QutputStream setAscii Strean{long pos) throws SQLException

/**

* Wite to the CLOB froma streamat the requested position.
* @arampos is the position data to be put.
* @eturn a output streamto wite data to the CLOB
*|
public java.io.Witer setCharacterStrean(long pos) throws SQLException

/**

* Read fromthe CLOB as a streamat the requested position.
* @arampos is the position data to be put.
* @eturn a output streamto wite data to the CLOB

ORACLE 10-43

Chapter 10
Using Java (JDBC) to Work With LOBs

*/
public java.io.|nputStream getAsciiStreanm(long pos) throws SQException
/**

* Read fromthe CLOB as a streamat the requested position.

* @arampos is the position data to be put.

* @eturn a output streamto wite data to the CLOB

*|
public java.io.Reader getCharacterStrean(long pos) throws SQLException

BFILE Streaming APIs

oracl e. sql . BFI LE class wraps the database BFI LEs. Table 10-49 lists the Oracle
extension APIs in or acl e. sql . BFI LE that reads BFI LE content from the requested
position.

Table 10-49 JDBC: BFILE Streaming APIs

___|]
Methods Description

public java.io.lnputStream Reads from the BFI LE as a stream
get BinaryStreanm(l ong pos) throws SQLException

These APIs are defined as follows:
/**

* Read fromthe BLOB as a streamat the requested position.

*

* @arampos is the position data to be read.

* @eturn a output streamto wite data to the BLOB

*/

public java.io.lnputStream getBinaryStrean(long pos) throws SQLException

JDBC BFILE Streaming Example (NewStreamLob.java)

/*
* This sanple shows howto read/wite BLOB and CLOB as streans.
*|

import java.io.*;

/1 You nust inport the java.sql package to use JDBC
import java.sql.*;

/1 You nust inport the oracle.sql package to use oracle.sql.BLOB
i mport oracle.sql.*;

class NewStreanlob
{

public static void main (String args []) throws Exception

{
/! Load the Oracle JDBC driver

Driver Manager . regi sterDriver(new oracl e.jdbc. driver.OracleDriver());
String url = "jdbc:oracle:oci8: @;

try {
String urll = System getProperty("JDBC_URL");

ORACLE 10-44

ORACLE

Chapter 10
Using Java (JDBC) to Work With LOBs

if (urll !'=null)
url =url1;
} catch (Exception e) {
Il 1f there is any security exception, ignore it
/1 and use the defaul t

}

/1 Connect to the database
Connection conn =
Driver Manager. get Connection (url, "scott", "password");
/I It is faster when auto commt is off
conn. set AutoCommit (fal se);

Il Create a Statenent
Statenent stnt = conn.createStatenent ();

try
{

stnt.execute ("drop table basic_lob_table");

}
catch (SQ.Exception e)
{

/1 An exception could be raised here if the table did not exist.

}

/| Create a table containing a BLOB and a CLOB
stnt. execute (

"create table basic_|lob_table"

+ "(x varchar2 (30), b blob, ¢ clob)");

/] Popul ate the table
stnt. execute (
"insert into basic_lob_table val ues"
+ "("one', '010101010101010101010101010101", 'onetwothreefour')");

Systemout.println ("Dunping |obs");

/1 Select the |obs
Resul t Set rset = stnt.executeQuery ("select * frombasic_|ob_table");
while (rset.next ())
{
Il CGet the |obs
BLOB bl ob = (BLOB) rset.getChject (2);
CLOB clob = (CLOB) rset.getvject (3);

Il Print the |ob contents
dunpBl ob (conn, blob, 1);
dunpd ob (conn, clob, 1);

/1 Change the lob contents

filldob (conn, clob, 11, 50);
fillBlob (conn, blob, 11, 50);

}
rset.close ();
Systemout. println ("Dunping |obs again");

rset = stnt.executeQuery ("select * frombasic_|lob_table");
while (rset.next ())

Il Get the |obs

10-45

ORACLE

Chapter 10
Using Java (JDBC) to Work With LOBs

BLOB bl ob = (BLOB) rset.getChject (2);
CLOB clob = (CLOB) rset.getvject (3);

/1 Print the lobs contents
dunpBl ob (conn, blob, 11);
dunpC ob (conn, clob, 11);

/1 Cose all resources
rset.close();
stnt.close();
conn. cl ose();

}

[/ Wility function to dunp Cob contents

static void dunpC ob (Connection conn, CLOB clob, long offset)
throws Exception

{
/] get character streamto retrieve clob data
Reader instream = cl ob. get Charact er Strean{of fset);

/] create tenporary buffer for read
char[] buffer = new char[10];

/'l length of characters read
int length = 0;

Il fetch data
while ((length = instreamread(buffer)) !=-1)

Systemout.print("Read " + length + " chars: ");

for (int i=0; i<length; i++)
Systemout. print(buffer[i]);
Systemout. println();
}

/1 O ose input stream
instream cl ose();

}

[/ Wility function to dunp Bl ob contents
static void dunpBl ob (Connection conn, BLOB bl ob, |ong offset)
throws Exception
{
/] Get binary output streamto retrieve blob data
I nput Streaminstream = bl ob. get Bi naryStrean{of fset);
/] Create tenporary buffer for read
byte[] buffer = new byte[10];
Il length of bytes read
int length = 0;
/'l Fetch data
while ((length = instreamread(buffer)) !=-1)

Systemout.print("Read " + length + " bytes: ");
for (int i=0; i<length; i++)
Systemout.print(buffer[i]+" ");

Systemout. println();
}

/1 O ose input stream

10-46

Chapter 10
Using Java (JDBC) to Work With LOBs

i nstream cl ose();

}

[/ Wility function to put data in a Cob
static void filldob (Connection conn, CLOB clob, long offset, long |ength)
throws Exception

{

Witer outstream = clob. set Character Streanof fset);

int i =0;
int chunk = 10;

while (i < length)
{

outstream write("aaaaaaaaaa", 0, chunk);

i += chunk;
if (length - i < chunk)
chunk = (int) length - i;
}

out stream cl ose();

}

[/ Wility function to put data in a Blob
static void fillBlob (Connection conn, BLOB blob, long offset, long |ength)
throws Exception

{
Qut put St ream out stream = bl ob. setBi naryStrean{of fset);

int i =0;
int chunk = 10;

byte [] data={ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};

while (i < length)
{

outstreamwite(data, 0, chunk);

i += chunk;
if (length - i < chunk)
chunk = (int) length - i;
}
out stream cl ose();
1
}

JDBC and Empty LOBs

ORACLE

An empty BLOB can be created from the following API from or acl e. sql . BLOB:
public static BLOB enpty_lob () throws SQLException

Similarly, the following API from or acl e. sql . CLOB creates an empty CLOB:

public static CLOB enpty_lob () throws SQLException

Empty LOB instances are created by JDBC drivers without making database round
trips. Empty LOBs can be used in the following cases:

e set APIs of Prepar edSt at ement

10-47

Chapter 10
Oracle Provider for OLE DB (OraOLEDB)

* update APIs of updatable result set
e attribute value of STRUCTS

e element value of ARRAYs

Note:
Empty LOBs are special marker LOBs but not real LOB values.
JDBC applications cannot read or write to empty LOBs created from the preceding

APIs. An ORA-17098 "Invalid empty lob operation” results if your application attempts
to read/write to an empty LOB.

Oracle Provider for OLE DB (OraOLEDB)

Overview

ORACLE

Oracle Provider for OLE DB (OraOLEDB) offers high performance and efficient access
to Oracle data for OLE DB and ADO developers.

Developers programming with COM, C++, or any COM client can use OraOLEDB to
access Oracle databases.

OraOLEDB is an OLE DB provider for Oracle. It offers high performance and efficient
access to Oracle data including LOBs, and also allows updates to certain LOB types.

The following LOB types are supported by OraOLEDB:
* For Persistent LOBs:
READMVRI TE through the rowset.
* For BFILEs:
READ-ONLY through the rowset.
* Temporary LOBs:

Are not supported through the rowset.

¢ See Also:

Oracle Provider for OLE DB Developer's Guide for Microsoft Windows

of Oracle Data Provider for NET (ODP.NET)

Oracle Data Provider for .NET (ODP.NET) is an implementation of a data provider for
the Oracle database.

ODP.NET uses Oracle native APIs to offer fast and reliable access to Oracle data and
features from any .NET application. ODP.NET also uses and inherits classes and
interfaces available in the Microsoft .NET Framework Class Library. The ODP.NET
supports the following LOBs as native data types with .NET: BLOB, CLOB, NCLOB, and
BFI LE.

10-48

Chapter 10
Overview of Oracle Data Provider for .NET (ODP.NET)

COM and .NET are complementary development technologies. Microsoft recommends
that developers use the .NET Framework rather than COM for new development.

See Also:

Oracle Data Provider for .NET Developer's Guide for Microsoft Windows

ORACLE 10-49

LOB APIs for BFILE Operations

ORACLE

APIs for operations that use BFI LEs are listed in Table 11-1.

This information is given for each operation described:

Usage Notes provide implementation guidelines such as information specific to a

given programmatic environment or data type.

Syntax refers you to the syntax reference documentation for each supported
programmatic environment.

Examples describe any setup tasks necessary to run the examples given.
Demonstration files listed are available in subdirectories under $ORACLE_HOVE/
r dbns/ demo/ | obs/ named pl sql , oci, vb, and j ava. The driver program

| obdeno. sql isin/plsql and the driver program | obdeno. c isin/oci .

" Note:
LOB APIs do not support loading data into BFI LEs.

¢ See Also:

About Using SQL*Loader to Load LOBs for details about techniques to
load data into BFI LEs.

Topics:

Supported Environments for BFILE APls

About Accessing BFILEs

Directory Objects

BFILENAME and Initialization

Characteristics of the BFILE Data Type

BFILE Security

About Loading a LOB with BFILE Data

About Opening a BFILE with OPEN

About Opening a BFILE with FILEOPEN

About Determining Whether a BFILE Is Open Using ISOPEN
About Determining Whether a BFILE Is Open with FILEISOPEN
About Displaying BFILE Data

About Reading Data from a BFILE

11-1

Chapter 11

Supported Environments for BFILE APIs

* About Reading a Portion of BFILE Data Using SUBSTR

e Comparing All or Parts of Two BFILES

* Checking If a Pattern Exists in a BFILE Using INSTR

» Determining Whether a BFILE Exists
* Getting the Length of a BFILE
* About Assigning a BFILE Locator

* Getting Directory Object Name and File Name of a BFILE

e About Updating a BFILE by Initializing a BFILE Locator

* Closing a BFILE with FILECLOSE
* Closing a BFILE with CLOSE

e Closing All Open BFILEs with FILECLOSEALL

* About Inserting a Row Containing a BFILE

Supported Environments for BFILE APIs

Those programmatic environments that are supported for the APIs are listed in
Table 11-1. The first column describes the operation that the API performs. The
remaining columns indicate with Yes or No whether the API is supported in PL/SQL,

OCl, COBOL, Pro*C/C++, and JDBC.

Table 11-1 Environments Supported for BFILE APIs

Operation PL/SQL OCI COBOL Pro*CIC++ JDBC
About Inserting a Row Containing a BFILE Yes Yes Yes Yes Yes
About Loading a LOB with BFILE Data Yes Yes Yes Yes Yes
About Opening a BFILE with FILEOPEN Yes Yes No No Yes
About Opening a BFILE with OPEN Yes Yes Yes Yes Yes
About Determining Whether a BFILE Is Open Using Yes Yes Yes Yes Yes
ISOPEN

About Determining Whether a BFILE Is Open with Yes Yes No No Yes
FILEISOPEN

About Displaying BFILE Data Yes Yes Yes Yes Yes
About Reading Data from a BFILE Yes Yes Yes Yes Yes
About Reading a Portion of BFILE Data Using Yes No Yes Yes Yes
SUBSTR

Comparing All or Parts of Two BFILES Yes No Yes Yes Yes
Checking If a Pattern Exists in a BFILE Using Yes No Yes Yes Yes
INSTR

Determining Whether a BFILE Exists Yes Yes Yes Yes Yes
Getting the Length of a BFILE Yes Yes Yes Yes Yes
About Assigning a BFILE Locator Yes Yes Yes Yes Yes
Getting Directory Object Name and File Name ofa Yes Yes Yes Yes Yes
BFILE
ORACLE 11-2

Chapter 11
About Accessing BFILES

Table 11-1 (Cont.) Environments Supported for BFILE APIs

Operation PL/SQL OCI COBOL Pro*CIC++ JDBC
About Updating a BFILE by Initializing a BFILE Yes Yes Yes Yes Yes
Locator

Closing a BFILE with FILECLOSE Yes Yes No No Yes
Closing a BFILE with CLOSE Yes Yes Yes Yes Yes
Closing All Open BFILEs with FILECLOSEALL Yes Yes Yes Yes Yes

About Accessing BFILES

To access BFI LEs use one of the following interfaces:

e OCI (Oracle Call Interface)

 PL/SQL (DBMS_LOB package)

e Precompilers, such as Pro*C/C++ and Pro*xCOBOL
e Java (JDBC)

¢ See Also:

Overview of Supplied LOB APIs for information about supported
environments for accessing BFI LEs.

Directory Objects

The DI RECTORY object facilitates administering access and usage of BFI LE data types.

A DI RECTORY object specifies a logical alias name for a physical directory on the
database server file system under which the file to be accessed is located. You can
access a file in the server file system only if granted the required access privilege on
DI RECTORY object. You can also use Oracle Enterprise Manager Cloud Control to
manage DI RECTORY objects.

See Also:

e CREATE DI RECTCRY in Oracle Database SQL Language Reference

e See Oracle Database Administrator's Guide for the description of Oracle
Enterprise Manager Cloud Control

ORACLE 11-3

Chapter 11
Directory Objects

Initializing a BFILE Locator

The DI RECTCRY object provides the flexibility to manage the locations of the files,
instead of forcing you to hard-code the absolute path names of physical files in your
applications.

A directory object name is used in conjunction with the BFI LENAME function, in SQL and
PL/SQL, or the OCl LobFi | eSet Nang() in OCI, for initializing a BFI LE locator.

WARNING:

The database does not verify that the directory and path name you specify
actually exist. You should take care to specify a valid directory in your
operating system. If your operating system uses case-sensitive path names,
then be sure you specify the directory in the correct format. There is no
requirement to specify a terminating slash (for example, / t np/ is not
necessary, simply use /t np).

Directory specifications cannot contain ".." anywhere in the path (for
example, / abc/ def/hij..).

How to Associate Operating System Files with a BFILE

ORACLE

To associate an operating system file to a BFI LE, first create a DI RECTORY object which
is an alias for the full path name to the operating system file.

To associate existing operating system files with relevant database records of a
particular table use Oracle SQL DML (Data Manipulation Language). For example:

e Use | NSERT to initialize a BFI LE column to point to an existing file in the server file
system.

* Use UPDATE to change the reference target of the BFI LE.

* Initialize a BFI LE to NULL and then update it later to refer to an operating system
file using the BFI LENAME function.

* OCIl users can also use OCl LobFi | eSet Nane() to initialize a BFI LE locator variable
that is then used in the VALUES clause of an | NSERT statement.

Directory Example

The following statements associate the files | magel. gi f and i mage2. gi f with records
having key_val ue of 21 and 22 respectively. 'l M5 is a DI RECTORY object that
represents the physical directory under which | magel. gi f and i nage2. gi f are stored.

You may be required to set up data structures similar to the following for certain
examples to work:

CREATE TABLE Lob_table (
Key val ue NUVMBER NOT NULL,
F | ob BFILE)
I NSERT | NTO Lob_tabl e VALUES
(21, BFILENAME(' IMG, 'Imagel.gif')):;

11-4

Chapter 11
BFILENAME and Initialization

I NSERT | NTO Lob_t abl e VALUES
(22, BFILENAME('IMG, 'imge2.gif'));

The following UPDATE statement changes the target file to i mage3. gi f for the row with
key val ue of 22.

UPDATE Lob_table SET f_lob = BFILENAME(' IMG, "inmge3.gif')
VHERE Key_val ue = 22;

WARNING:

The database does not expand environment variables specified in the
DI RECTORY obiject or file name of a BFI LE locator. For example, specifying:

BFI LENAVE(' WORK DIR , ' $MW_FILE')

where MY_FI LE, an environment variable defined in the operating system, is
not valid.

BFILENAME and Initialization

BFI LENAME is a built-in function that you use to initialize a BFI LE column to point to an
external file.

Once physical files are associated with records using SQL DML, subsequent read
operations on the BFI LE can be performed using PL/SQL DBM5S_LOB package and OCI.
However, these files are read-only when accessed through BFI LEs, and so they cannot
be updated or deleted through BFI LEs.

As a consequence of the reference-based semantics for BFI LEs, it is possible to have
multiple BFI LE columns in the same record or different records referring to the same
file. For example, the following UPDATE statements set the BFI LE column of the row
with key_val ue =21 in | ob_t abl e to point to the same file as the row with key val ue =
22.

UPDATE | ob_tabl e
SET f_lob = (SELECT f_l ob FROM | ob_tabl e WHERE key_val ue = 22)
VHERE key_val ue = 21;

Think of BFI LENAME in terms of initialization — it can initialize the value for the
following:

e BFI LE column

* BFI LE (automatic) variable declared inside a PL/SQL module

Characteristics of the BFILE Data Type

Using the BFI LE data type has the following advantages:

» If your need for a particular BFI LE is temporary and limited within the module on
which you are working, then you can use the BFI LE related APIs on the variable
without ever having to associate this with a column in the database.

ORACLE 11-5

Chapter 11
BFILE Security

» Because you are not forced to create a BFI LE column in a server side table,
initialize this column value, and then retrieve this column value using a SELECT,
you save a round-trip to the server.

About Loading a LOB with BFILE Data for examples related
toDBVS_L OB.LOADFROWFI LE .

The OCI counterpart for BFI LENAME is OCl LobFi | eSet Name() , which can be used in a
similar fashion.

DIRECTORY Name Specification

You must have CREATE ANY DI RECTCORY system privilege to create directories.

Path names cannot contain two dots (".."). The naming convention for DI RECTORY
objects is the same as that for tables and indexes. That is, normal identifiers are
interpreted in uppercase, but delimited identifiers are interpreted as is. For example,
the following statement:

CREATE OR REPLACE DI RECTORY scott dir AS '/usr/home/scott';

creates or redefines a DI RECTCRY object whose name is 'SCOTT_DI R (in uppercase).
But if a delimited identifier is used for the DI RECTORY name, as shown in the following
statement

CREATE DI RECTORY "Mary_Dir" AS '/usr/hone/ mary";

then the directory object name is '‘Mary_Dir'. Use 'SCOTT_DI R and 'Mary_Di r' when
calling BFI LENAME. For example:

BFI LENAVE(' SCOTT DIR, 'afile')
BFI LENAME(' Mary_Dir', "afile")

On Windows Platforms

On Windows platforms the directory names are case-insensitive. Therefore the
following two statements refer to the same directory:

CREATE DI RECTCRY "big_cap_dir" AS "g:\data\source";

CREATE DI RECTORY "snmal | _cap_dir" AS "G \ DATA SOURCE";

BFILE Security

BEFI LE security concerns the BFI LE security model and associated SQL statements.
The main SQL statements associated with BFI LE security are:

* SQL DDL: CREATE and REPLACE or ALTER a DI RECTORY object

e SQL DML: GRANT and REVCKE the READ system and object privileges on DI RECTORY
objects

Ownership and Privileges

The DI RECTORY object is a system owned object.

ORACLE 11-6

Chapter 11
BFILE Security

For more information on system owned objects, see Oracle Database SQL Language
Reference. Oracle Database supports two new system privileges, which are granted
only to DBA:

» CREATE ANY DI RECTORY: For creating or altering the DI RECTORY object creation
» DRCP ANY DI RECTORY: For deleting the DI RECTORY object

Read Permission on a DIRECTORY Object

READ permission on the DI RECTORY object enables you to read files located under that
directory. The creator of the DI RECTORY object automatically earns the READ privilege.

If you have been granted the READ permission with GRANT option, then you may in turn
grant this privilege to other users/roles and add them to your privilege domains.

Note:

The READ permission is defined only on the DI RECTORY object, not on
individual files. Hence there is no way to assign different privileges to files in
the same directory.

The physical directory that it represents may or may not have the corresponding
operating system privileges (read in this case) for the Oracle Server process.

It is the responsibility of the DBA to ensure the following:

* That the physical directory exists

* Read permission for the Oracle Server process is enabled on the file, the
directory, and the path leading to it

* The directory remains available, and read permission remains enabled, for the
entire duration of file access by database users

The privilege just implies that as far as the Oracle Server is concerned, you may read
from files in the directory. These privileges are checked and enforced by the PL/SQL
DBMS_LOB package and OCI APIs at the time of the actual file operations.

WARNING:

Because CREATE ANY DI RECTORY and DROP ANY DI RECTORY privileges
potentially expose the server file system to all database users, the DBA
should be prudent in granting these privileges to normal database users to
prevent security breach.

ORACLE 11-7

Chapter 11
BFILE Security

SQL DDL for BFILE Security

" See Also:

Oracle Database SQL Language Reference for information about the
following SQL DDL statements that create, replace, and drop DI RECTORY
objects:

CREATE DI RECTORY
DROP DI RECTORY

SQL DML for BFILE Security

¢ See Also:

Oracle Database SQL Language Reference for information about the
following SQL DML statements that provide security for BFI LEs:

GRANT (system privilege)
CGRANT (object privilege)
REVOKE (system privilege)
REVCOKE (object privilege)
AUDI T (new statements)

AUDI T (schema objects)

Catalog Views on Directories

Catalog views are provided for DIRECTORY objects to enable users to view object
names and corresponding paths and privileges. Supported views are:

ORACLE

« ALL_DI RECTOR ES (OWNER, DI RECTORY_NAME, DI RECTCRY_PATH)

This view describes all directories accessible to the user.

* DBA_DI RECTORI ES(OWNER, DI RECTORY_NAME, DI RECTORY_PATH)

This view describes all directories specified for the entire database.

Guidelines for DIRECTORY Usage

The main goal of the DI RECTORY feature is to enable a simple, flexible, non-intrusive,
yet secure mechanism for the DBA to manage access to large files in the server file
system. But to realize this goal, it is very important that the DBA follow these
guidelines when using DI RECTORY objects:

11-8

Chapter 11
BFILE Security

* Do not map a DI RECTORY object to a data file directory. A DI RECTCORY object should
not be mapped to physical directories that contain Oracle data files, control files,
log files, and other system files. Tampering with these files (accidental or
otherwise) could corrupt the database or the server operating system.

e Only the DBA should have system privileges. The system privileges such as
CREATE ANY DI RECTORY (granted to the DBA initially) should be used carefully and
not granted to other users indiscriminately. In most cases, only the database
administrator should have these privileges.

* Use caution when granting the DIRECTORY privilege. Privileges on DI RECTORY
objects should be granted to different users carefully. The same holds for the use
of the W TH GRANT OPTI ON clause when granting privileges to users.

» Do not drop or replace DI RECTORY objects when database is in operation.
DI RECTORY objects should not be arbitrarily dropped or replaced when the
database is in operation. If this were to happen, then operations from all sessions
on all files associated with this DI RECTORY object fail. Further, if a DROP or REPLACE
command is executed before these files could be successfully closed, then the
references to these files are lost in the programs, and system resources
associated with these files are not be released until the session(s) is shut down.

The only recourse left to PL/SQL users, for example, is to either run a program
block that calls DBM5_LOB.FI LECLOSEALL and restart their file operations, or exit
their sessions altogether. Hence, it is imperative that you use these commands
with prudence, and preferably during maintenance downtimes.

e Use caution when revoking a user's privilege on DI RECTORY objects. Revoking a
user's privilege on a DI RECTORY object using the REVOKE statement causes all
subsequent operations on dependent files from the user's session to fail. Either
you must re-acquire the privileges to close the file, or run a FI LECLOSEALL in the
session and restart the file operations.

In general, using DI RECTORY objects for managing file access is an extension of system
administration work at the operating system level. With some planning, files can be
logically organized into suitable directories that have READ privileges for the Oracle
process.

DI RECTORY objects can be created with READ privileges that map to these physical
directories, and specific database users granted access to these directories.

BFILEs in Shared Server (Multithreaded Server) Mode

The database does not support session migration for BFI LE data types in shared
server (multithreaded server) mode. This implies that operations on open BFI LE
instances can persist beyond the end of a call to a shared server.

In shared server sessions, BFI LE operations are bound to one shared server, they
cannot migrate from one server to another.

External LOB (BFILE) Locators

For BFI LEs, the value is stored in a server-side operating system file; in other words,
external to the database. The BFI LE locator that refers to that file is stored in the row.

ORACLE 11-9

Chapter 11
BFILE Security

When Two Rows in a BFILE Table Refer to the Same File

If a BFI LE locator variable that is used in a DBMS_LOB.FI LECPEN (for example L1) is
assigned to another locator variable, (for example L2), then both L1 and L2 point to the
same file.

This means that two rows in a table with a BFI LE column can refer to the same file or
to two distinct files — a fact that the canny developer might turn to advantage, but
which could well be a pitfall for the unwary.

BFILE Locator Variable

A BFI LE locator variable operates like any other automatic variable. With respect to file
operations, it operates like a file descriptor available as part of the standard input/
output library of most conventional programming languages.

This implies that once you define and initialize a BFI LE locator, and open the file
pointed to by this locator, all subsequent operations until the closure of this file must
be done from within the same program block using this locator or local copies of this
locator.

Guidelines for BFILES

ORACLE

Note the following guidelines when working with BFI LEs:

* Open and close a file from the same program block at same nesting level. The
BFI LE locator variable can be used, just as any scalar, as a parameter to other
procedures, member methods, or external function callouts. However, it is
recommended that you open and close a file from the same program block at the
same nesting level.

e Set the BFI LE value before flushing the object to the database. If an object
contains a BFl LE, then you must set the BFI LE value before flushing the object to
the database, thereby inserting a new row. In other words, you must call
OCl LobFi | eSet Nane() after OCl Obj ect New() and before OCl Ghj ect Fl ush() .

* Indicate the DI RECTCRY object name and file name before inserting or updating of a
BFI LE. It is an error to insert or update a BFI LE without indicating a DI RECTORY
object name and file name.

This rule also applies to users using an OCI bind variable for a BFI LE in an insert
or update statement. The OCI bind variable must be initialized with a DI RECTORY
object name and file name before issuing the insert or update statement.

e Initialize BFI LE Before insert or update
" Note:
OCl Set Attr () does not allow the user to set a BFI LE locator to NULL.
» Before using SQL to insert or update a row with a BFI LE, you must initialize the

BFI LE to one of the following:
— NULL (not possible if using an OCI bind variable)

11-10

Chapter 11
About Loading a LOB with BFILE Data

— A DI RECTORY object name and file name

e A path name cannot contain two dots ("..") anywhere in its specification. A file
name cannot start with two dots.

About Loading a LOB with BFILE Data

ORACLE

You can load a LOB with data from a BFI LE.

¢ See Also:

Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Oracle Database JDBC Developer’s Guide for details of working with BFI LE
functions in this chapter.

Preconditions
The following preconditions must exist before calling this procedure:

* The source BFI LE instance must exist.

* The destination LOB instance must exist.

Usage Notes

< Note:

The LOADBLOBFROVFI LE and LOADCLOBFROVFI LE procedures implement the
functionality of this procedure and provide improved features for loading
binary data and character data. The improved procedures are available in
the PL/SQL environment only. When possible, using one of the improved
procedures is recommended.

¢ See Also:

e About Loading a BLOB with Data from a BFILE
e Loading a CLOB or NCLOB with Data from a BFILE

Character Set Conversion

In using OCI, or any of the programmatic environments that access OCI functionality,
character set conversions are implicitly performed when translating from one character
set to another.

11-11

ORACLE

Chapter 11
About Loading a LOB with BFILE Data

BFILE to CLOB or NCLOB: Converting From Binary Data to a Character Set

When you use the DBVS_LOB. LOADFROWFI LE procedure to populate a CLOB or NCLOB,
you are populating the LOB with binary data from the BFI LE. No implicit translation is
performed from binary data to a character set. For this reason, you should use the
LOADCLOBFROVFI LE procedure when loading text.

" See Also:

e Loading a CLOB or NCLOB with Data from a BFILE

e Oracle Database Globalization Support Guide for character set
conversion issues.

Amount Parameter
Note the following with respect to the anount parameter:

e (OCl LobLoadFronFile()

If you want to load the entire BFI LE, then you can pass the constant UB4MAXVAL. If
you pass any other value, then it must be less than or equal to the size of the
BFI LE.

e (OCl LobLoadFronFil e2()

If you want to load the entire BFI LE, then you can pass the constant UBSMAXVAL. If
you pass any other value, then it must be less than or equal to the size of the
BFI LE.

¢ See Also:

Table 12-2 for details on the maximum value of the amount parameter.

Syntax
Use the following syntax references for each programmatic environment:

* PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — LOADFROMFILE

e C (OCI): Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations", for usage notes and examples. Chapter 16, "LOB Functions" —
OCl LobLoadFronFi | e2().

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and LOB LOAD (executable embedded SQL
extension).

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements" "Embedded SQL Statements and Directives"— LOB LOAD.

e Java (JDBC) Oracle Database JDBC Developer's Guide): "Working With LOBs
and BFILEs" — Working with BFILEs.

11-12

Chapter 11
About Opening a BFILE with OPEN

Examples

Examples are provided in the following programmatic environments:

PL/SQL (DBMS_LOB): f| oaddat . sql
OCI: fl oaddat . ¢
Java (JDBC): No example.

About Opening a BFILE with OPEN

You can open a BFI LE using the OPEN function.

ORACLE

" Note:

You can also open a BFI LE using the FI LEOPEN function; however, using the
OPEN function is recommended for new development.

¢ See Also:

e About Opening a BFILE with FILEOPEN for more information about
FI LEOPEN function

e Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Syntax

Use the following syntax references for each programmatic environment:

PL/SQL(DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — OPEN

C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations", for usage notes. Chapter 16, section "LOB Functions" —
OCl LobOpen(), OCI Lobd ose() .

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB OPEN executable embedded SQL
extension.

C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBSs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB OPEN.

Java (JDBC) (Oracle Database JDBC Developer's Guide): "Working With LOBs
and BFILEs" — Working with BFILEs.

Scenario

These examples open an image in operating system file ADPHOTO DI R.

11-13

Chapter 11
About Opening a BFILE with FILEOPEN

Examples

Examples are provided in the following programmatic environments:
PL/SQL(DBMS_LOB): f open. sql

e OCI: fopen.c

e Java (JDBC): fopen.java

About Opening a BFILE with FILEOPEN

ORACLE

You can open a BFI LE using the FI LEOPEN function.

< Note:

The FI LEOPEN function is not recommended for new application
development. The OPEN function is recommended for new development.

¢ See Also:

* About Opening a BFILE with OPEN

e Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Usage Notes for Opening a BFILE

While you can continue to use the older FI LEOPEN form, Oracle strongly recommends
that you switch to using OPEN, because this facilitates future extensibility.

Syntax

Use the following syntax references for each programmatic environment:

* PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — FILEOPEN, FILECLOSE

e C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations, for usage notes. Chapter 16, section "LOB Functions" —
OCl LobFi | eOpen(), OCl LobFi | eCl ose(), OCl LobFi | eSet Nane() .

« COBOL (Pro*COBOL): A syntax reference is not applicable in this release.
e C/C++ (Pro*C/C++): A syntax reference is not applicable in this release.

» Java (JDBC) (Oracle Database JDBC Developer's Guide): "Working With LOBs
and BFILEs" — Working with BFILESs.

Scenario for Opening a BFILE
These examples open keyboard_| ogo. j pg in DI RECTORY object MEDI A DI R.

11-14

Chapter 11
About Determining Whether a BFILE Is Open Using ISOPEN

Examples

Examples are provided in the following programmatic environments:
* PL/SQL (DBMS_LOB): ffil open. sql

e OCIffilopen.c

e Java (JDBC):ffilopen.java

About Determining Whether a BFILE Is Open Using

ISOPEN

ORACLE

You can determine whether a BFI LE is open using | SOPEN.

< Note:

This function (I SOPEN) is recommended for new application development.
The older FI LEI SOPEN function, is not recommended for new development.

¢ See Also:

e About Determining Whether a BFILE Is Open with FILEISOPEN

e Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Syntax
Use the following syntax references for each programmatic environment:

e PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — ISOPEN

e C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCl LobFi | el sOpen() .

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB DESCRIBE executable embedded SQL
extension.

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBSs)",
"LOB Statements", "Large Objects (LOBs)", "LOB Statements", "Embedded SQL
Statements and Directives" — LOB DESCRIBE

» Java (JDBC) (Oracle Database JDBC Developer's Guide): "Working With LOBs
and BFILEs" — Working with BFILEs.

Examples

Examples are provided in the following programmatic environments:

11-15

Chapter 11
About Determining Whether a BFILE Is Open with FILEISOPEN

 PL/SQL (DBMS_LOB): fi sopen. sql
e OCI: fisopen.c
e Java (JDBC): fisopen.java

About Determining Whether a BFILE Is Open with
FILEISOPEN

ORACLE

You can determine whether a BFI LE is OPEN using the FI LEI SOPEN function.

" Note:

The FI LEI SOPEN function is not recommended for new application
development. The | SOPEN function is recommended for new development.

¢ See Also:

e About Determining Whether a BFILE Is Open Using ISOPEN

e Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Usage Notes

While you can continue to use the older FI LEI SOPEN form, Oracle strongly
recommends that you switch to using | SOPEN, because this facilitates future
extensibility.

Syntax

Use the following syntax references for each programmatic environment:

e PL/SQL(DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — FILEISOPEN

e C (OCI) (Oracle Call Interface Programmer's Guide). Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCl LobFi I el sOpen() .

* COBOL (Pro*COBOL): A syntax reference is not applicable in this release.
* C/C++ (Pro*C/C++): A syntax reference is not applicable in this release.

» Java (JDBC) (Oracle Database JDBC Developer's Guide): "Working With LOBs
and BFILEs" — Working with BFILEs.

Scenario

These examples query whether a BFI LE associated with ad_gr aphi c is open.

11-16

Chapter 11
About Displaying BFILE Data

Examples

Examples are provided in the following programmatic environments:

PL/SQL(DBMS_LOB): f fi sopen. sql
OCI: ffisopen.c
Java (JDBC): ffi sopen. java

About Displaying BFILE Data

You can display BFI LE data using various operations that differ by programmatic
environment..

" See Also:

Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Syntax

Use the following syntax references for each programmatic environment:

PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — READ. Chapter 29, "DBMS_OUTPUT" - PUT_LINE

C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCl LobFi | eOpen(), OCl LobRead?2() .

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB READ executable embedded SQL
extension.

C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements” — READ

Java (JDBC) (Oracle Database JDBC Developer's Guide):. Chapter 7, "Working
With LOBs and BFILEs" — Working with BFILEs.

Examples

Examples are provided in these programmatic environments:

PL/SQL (DBMS_LOB): f di spl ay. sql
OCI: fdisplay.c
Java (JDBC): fdi spl ay. j ava

About Reading Data from a BFILE

You can read data from a BFI LE.

ORACLE

11-17

ORACLE

Chapter 11
About Reading Data from a BFILE

¢ See Also:

Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Usage Notes

Note the following when using this operation.

Streaming Read in OCI

The most efficient way to read large amounts of BFI LE data is by OCl LobRead2() with
the streaming mechanism enabled, and using polling or callback. To do so, specify the
starting point of the read using the of f set parameter as follows:

ub8 char_ant 0;
ub8 byte ant = O0;
ub4 of fset = 1000;

OCl LobRead2(svchp, errhp, locp, &byte_ant, &char_ant, offset, bufp, bufl,
OCl_ONE_PIECE, 0, 0, 0, 0);

When using polling mode, be sure to look at the value of the byt e_ant parameter after
each OCl LobRead2() call to see how many bytes were read into the buffer, because
the buffer may not be entirely full.

When using callbacks, the | enp parameter, which is input to the callback, indicates
how many bytes are filled in the buffer. Be sure to check the | enp parameter during
your callback processing because the entire buffer may not be filled with data.

Amount Parameter

* When calling DBMS_LOB. READ, the amount parameter can be larger than the size of
the data; however, the amount parameter should be less than or equal to the size
of the buffer. In PL/SQL, the buffer size is limited to 32K.

* When calling OCl LobRead2(), you can pass a value of 0 (zero) for the byt e_ant
parameter to read to the end of the BFI LE.

¢ See Also:

Oracle Call Interface Programmer's Guide

Syntax
Use the following syntax references for each programmatic environment:

* PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — READ

e C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCl LobRead2() .

11-18

Chapter 11
About Reading a Portion of BFILE Data Using SUBSTR

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB READ executable embedded SQL
extension.

C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBSs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB READ

Java (JDBC) (Oracle Database JDBC Developer's Guide): Chapter 7, "Working
With LOBs and BFILES" — Working with BFILEs.

Examples

Examples are provided in the following programmatic environments:

PL/SQL (DBMS_LOB): fread. sql
OCl: fread.c
Java (JDBC): fread. j ava

About Reading a Portion of BFILE Data Using SUBSTR

You can read a portion of BFI LE data using SUBSTR.

ORACLE

" See Also:

Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Syntax

Use the following syntax references for each programmatic environment:

PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — SUBSTR

OCI: A syntax reference is not applicable in this release.

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB CLOSE executable embedded SQL
extension.

C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBSs)",
"LOB Statements”, "Embedded SQL Statements and Directives" — LOB OPEN.

Java (JDBC) (Oracle Database JDBC Developer's Guide): Chapter 7, "Working
With LOBs and BFILEs" — Working with BFILEs.

Examples

Examples are provided in these programmatic environments:

PL/SQL (DBMS_LOB): freadprt. sql
C (OCI): No example is provided with this release.

Java (JDBC): freadprt.java

11-19

Chapter 11
Comparing All or Parts of Two BFILES

Comparing All or Parts of Two BFILES

You can compare all or parts of two BFI LEs.

¢ See Also:

Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Syntax
Use the following syntax references for each programmatic environment:

* PL/SQL(DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — COMPARE

* C (OCI): A syntax reference is not applicable in this release.

 COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB OPEN executable embedded SQL
extension.

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBSs)",
"LOB Statements”, "Embedded SQL Statements and Directives" — LOB OPEN.

» Java (JDBC) (Oracle Database JDBC Developer's Guide): "Working With LOBs
and BFILEs" — Working with BFILEs.

Examples

Examples are provided in these programmatic environments:
* PL/SQL(DBMS_LOB): f conpar e. sql

* OCI: No example is provided with this release.

» Java (JDBC): fconpare.j ava

Checking If a Pattern Exists in a BFILE Using INSTR

You can determine whether a pattern exists in a BFI LE using the | NSTRoperation.

¢ See Also:

Table 11-1for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Syntax

Use the following syntax references for each programmatic environment:

ORACLE 11-20

Chapter 11
Determining Whether a BFILE Exists

PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — INSTR

C (OCI): A syntax reference is not applicable in this release.

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB OPEN executable embedded SQL
extension.

C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBSs)",
"LOB Statements”, "Embedded SQL Statements and Directives" — LOB OPEN.

Java (JDBC) (Oracle Database JDBC Developer's Guide):"Working With LOBs
and BFILEs" — Working with BFILEs.

Examples

These examples are provided in the following programmatic environments:

PL/SQL (DBMS_LOB): f pat tern. sql
OCI: No example is provided with this release.

Java (JDBC): fpattern.java

Determining Whether a BFILE Exists

This procedure determines whether a BFI LE locator points to a valid BFI LE instance.

ORACLE

¢ See Also:

Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Syntax

Use the following syntax references for each programmatic environment:

PL/SQL (DBMS_LOB) Oracle Database PL/SQL Packages and Types Reference):
"DBMS_LOB" — FILEEXISTS

C (OCI) Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCl LobFi | eExi sts() .

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB DESCRIBE executable embedded SQL
extension.

C/C++ (Pro*C/C++) Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements”, "Embedded SQL Statements and Directives" — LOB
DESCRIBE.

Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILES.

11-21

Chapter 11
Getting the Length of a BFILE

Examples

The examples are provided in the following programmatic environments:
 PL/SQL (DBMS_LOB): fexi sts. sql

* OCI: fexists.c

e Java (JDBC): fexists.java

Getting the Length of a BFILE

You can get the length of a BFI LE.

" See Also:

Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Syntax
Use the following syntax references for each programmatic environment:

* PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — GETLENGTH

e C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations". Chapter 16, section "LOB Functions" — OCl LobGet Lengt h2() .

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB DESCRIBE executable embedded SQL
extension.

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements”, "Embedded SQL Statements and Directives" — LOB
DESCRIBE

e Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILES.

Examples

The examples are provided in these programmatic environments:
« PL/SQL (DBMS_LOB): fl engt h. sql

e OCIlflength.c

e Java (JDBC):flength.java

About Assigning a BFILE Locator

You can assign one BFI LE locator to another.

ORACLE 11-22

Chapter 11
Getting Directory Object Name and File Name of a BFILE

¢ See Also:

Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Syntax
Use the following syntax references for each programmatic environment:

* SQL (Oracle Database SQL Language Reference): Chapter 7, "SQL Statements"
— CREATE PROCEDURE

* PL/SQL (DBMS_LOB): Refer to Advanced Design Considerations of this manual
for information on assigning one lob locator to another.

e C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCl LobLocat or Assi gn() .

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB ASSIGN executable embedded SQL
extension.

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB ASSIGN

e Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILES.

Examples

The examples are provided in the following programmatic environments:
 PL/SQL (DBMS_LOB): f copyl oc. sql

e OCl: fcopyloc.c

e Java (JDBC): fcopyl oc. j ava

Getting Directory Object Name and File Name of a BFILE

ORACLE

You can get the DI RECTORY object name and file name of a BFI LE.

¢ See Also:

Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Syntax
Use the following syntax references for each programmatic environment:

e PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — FILEGETNAME

11-23

Chapter 11
About Updating a BFILE by Initializing a BFILE Locator

C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCl LobFi | eGet Nang() .

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and LOB DESCRIBE executable embedded
SQL extension.

C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements”, "Embedded SQL Statements and Directives" — LOB
DESCRIBE ... GET DIRECTORY ...

Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILES.

Examples

Examples of this procedure are provided in the following programmatic environments:

PL/SQL (DBMS_LOB): f getdi r. sql
OCl: fgetdir.c
Java (JDBC): fgetdir.java

About Updating a BFILE by Initializing a BFILE Locator

You can update a BFI LE by initializing a BFI LE locator.

ORACLE

¢ See Also:

Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Syntax

Use the following syntax references for each programmatic environment:

PL/SQL (DBMS_LOB): See the (Oracle Database SQL Language Reference),
Chapter 7, "SQL Statements" — UPDATE

C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCl LobFi | eSet Nang() .

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and ALLOCATE executable embedded SQL
extension. See also Oracle Database PL/SQL Packages and Types Reference for
more information on SQL UPDATE statement

C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives"

Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILEs.

11-24

Closing a

Closing a

ORACLE

Chapter 11
Closing a BFILE with FILECLOSE

Examples

* PL/SQL (DBMS_LOB): f updat e. sql
e OCI: fupdate.c

e Java (JDBC): fupdate.java

BFILE with FILECLOSE

You can close a BFI LE with FI LECLCOSE.

Note:

This function (FI LECLCSE) is not recommended for new development. For
new development, use the CLCSE function instead.

¢ See Also:
Closing a BFILE with CLOSE

Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Syntax
Use the following syntax references for each programmatic environment:

* PL/SQL (DBMS_LOB)(Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — FILEOPEN, FILECLOSE

e C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCl LobFi | eC ose().

e« COBOL (Pro*COBOL): A syntax reference is not applicable in this release.
e C/C++ (Pro*C/C++): A syntax reference is not applicable in this release.

» Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILES.

Examples

e« PL/SQL (DBMS_LOB): fcl ose_f. sql
e OClfclose f.c

e Java (JDBC):fclose f.java

BFILE with CLOSE

You can close a BFI LE with the CLOSE function.

11-25

ORACLE

Chapter 11
Closing a BFILE with CLOSE

< Note:

This function (CLOSE) is recommended for new application development. The
older FI LECLGCSE function, is not recommended for new development.

¢ See Also:

Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Usage Notes

Opening and closing a BFI LE is mandatory. You must close the instance later in the
session.

¢ See Also:

e About Opening a BFILE with OPEN
e About Determining Whether a BFILE Is Open Using ISOPEN

Syntax
Use the following syntax references for each programmatic environment:

e PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — CLOSE

e C (OCI) (Oracle Call Interface Programmer's Guide). Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCl LobCl ose().

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and LOB CLOSE executable embedded SQL
extension

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBSs)",
"LOB Statements”, "Embedded SQL Statements and Directives" — LOB CLOSE

» Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILEs" — Working with BFILEs.

Examples
* PL/SQL (DBMS_LOB): fcl ose_c. sql
e OCl fclose c.c

e Java (JDBC):fclose c.java

11-26

Chapter 11
Closing All Open BFILEs with FILECLOSEALL

Closing All Open BFILEs with FILECLOSEALL

You can close all open BFI LEs.

You are responsible for closing any BFI LE instances before your program terminates.
For example, you must close any open BFI LE instance before the termination of a
PL/SQL block or OCI program.

You must close open BFILE instances even in cases where an exception or
unexpected termination of your application occurs. In these cases, if a BFl LE instance
is not closed, then it is still considered open by the database. Ensure that your
exception handling strategy does not allow BFILE instances to remain open in these
situations.

¢ See Also:

e Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

e "Setting Maximum Number of Open BFILEs "

Syntax
Use the following syntax references for each programmatic environment:

* PL/SQL (DBMS_LOB) (Oracle Database PL/SQL Packages and Types
Reference): "DBMS_LOB" — FILECLOSEALL

* C (OCI) (Oracle Call Interface Programmer's Guide): Chapter 7, "LOB and File
Operations" for usage notes. Chapter 16, section "LOB Functions" —
OCl LobFi | eCl oseAl'l ().

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and LOB FILE CLOSE ALL executable
embedded SQL extension

e C/C++ (Pro*C/C++) (Pro*C/C++ Programmer's Guide): "Large Objects (LOBs)",
"LOB Statements", "Embedded SQL Statements and Directives" — LOB FILE
CLOSE ALL

e Java (JDBC) Oracle Database JDBC Developer's Guide: Chapter 7, "Working
With LOBs and BFILEs" — Working with BFILESs.

Examples

e PL/SQL (DBMS_LOB): fcl osea. sql
e OCl: fclosea.c

e Java (JDBC): fcl osea.java

About Inserting a Row Containing a BFILE

You can insert a row containing a BFI LE by initializing a BFI LE locator.

ORACLE 11-27

ORACLE

Chapter 11
About Inserting a Row Containing a BFILE

¢ See Also:

e Table 11-1, for a list of operations on BFI LEs and APIs provided for each
programmatic environment.

Usage Notes

You must initialize the BFI LE locator bind variable to NULL or a DI RECTCORY object and
file name before issuing the | NSERT statement.

Syntax

See the following syntax references for each programmatic environment:

SQL(Oracle Database SQL Language Reference, Chapter 7 "SQL Statements" —
INSERT

C (OCI) Oracle Call Interface Programmer's Guide: Chapter 7, "LOB and File
Operations".

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, embedded SQL, and precompiler directives. See
also Oracle Database SQL Language Reference, for related information on the
SQL INSERT statement.

C/C++ (Pro*C/C++) Pro*C/C++ Programmer's Guide: "Large Objects (LOBs)",
"LOB Statements”, "Embedded SQL Statements and Directives” — LOB FILE
SET. See also (Oracle Database SQL Language Reference), Chapter 7 "SQL
Statements” — INSERT

Java (JDBC) Oracle Database JDBC Developer's Guide: "Working With LOBs and
BFILESs" — Working with BFILES.

Examples

PL/SQL (DBMS_LOB): finsert. sql
OCl: finsert.c
Java (JDBC): finsert.java

11-28

Using LOB APIs

ORACLE

APIs that perform operations on BLOB, CLOB, and NCLOB data types appear in
Table 12-1. These operations can be used with either persistent or temporary LOB
instances. Note that these do not apply to BFI LEs.

¢ See Also:

e Operations Specific to Persistent and Temporary LOBs for information
on how to create temporary and persistent LOB instances and other
operations specific to temporary or persistent LOBS.

e LOB APIs for BFILE Operations for information on operations specific to
BFI LE instances.

This information is given for each of these operations:

Preconditions describe dependencies that must be met and conditions that must
exist before calling each operation.

Usage Notes provide implementation guidelines such as information specific to a
given programmatic environment or data type.

Syntax refers you to the syntax reference documentation for each supported
programmatic environment.

Examples describe any setup tasks necessary to run the examples given.
Demonstration files listed are available in subdirectories under $ORACLE_HOVE/
rdbns/ dermo/ | obs/ named pl sqgl , oci, vb, and j ava. The driver program

| obdeno. sql isin/pl sqgl and the driver program | obdeno. ¢ isin/ oci .

Topics:

Supported Environments

About Appending One LOB to Another

About Determining Character Set Form

About Determining Character Set ID

Loading a LOB with Data from a BFILE

About Loading a BLOB with Data from a BFILE
Loading a CLOB or NCLOB with Data from a BFILE
Determining Whether a LOB is Open

About Displaying LOB Data

About Reading Data from a LOB

About LOB Array Read

12-1

Chapter 12
Supported Environments

* Reading a Portion of a LOB (SUBSTR)

e Comparing All or Part of Two LOBs

» Patterns: Checking for Patterns in a LOB Using INSTR
* Length: Determining the Length of a LOB

e Copying All or Part of One LOB to Another LOB

e Copying a LOB Locator

» Equality: Checking If One LOB Locator Is Equal to Another
e About Determining Whether LOB Locator Is Initialized
* About Appending to a LOB

e About Writing Data to a LOB

* LOB Array Write

e About Trimming LOB Data

e About Erasing Part of a LOB

* Determining Whether a LOB instance Is Temporary

» Converting a BLOB to a CLOB

» Converting a CLOB to a BLOB

* Ensuring Read Consistency

Supported Environments

Table 12-1 indicates which programmatic environments are supported for the APIs
discussed in this chapter. The first column describes the operation that the API
performs. The remaining columns indicate with Yes or No whether the API is
supported in PL/SQL, OCI, OCCI, COBOL, Pro*C/C++, and JDBC.

Table 12-1 Environments Supported for LOB APIs

Operation PL/SQL OCI OCCI COBOL Pro*C/C++ JDBC
About Appending One LOB to Another Yes Yes No Yes Yes Yes
About Determining Character Set Form No Yes No No No No
About Determining Character Set ID No Yes No No No No
Determining Chunk Size, See: About Writing Data Yes Yes Yes Yes Yes Yes
toaLOB

Comparing All or Part of Two LOBs Yes No No Yes Yes Yes
Converting a BLOB to a CLOB Yes No No No No No
Converting a CLOB to a BLOB Yes No No No No No
Copying a LOB Locator Yes Yes No Yes Yes Yes
Copying All or Part of One LOB to Another LOB Yes Yes No Yes Yes Yes
About Displaying LOB Data Yes Yes No Yes Yes Yes
Equality: Checking If One LOB Locator Is Equal No Yes No No Yes Yes
to Another

About Erasing Part of a LOB Yes Yes No Yes Yes Yes

ORACLE 12-2

Table 12-1 (Cont.) Environments Supported for LOB APIs

Chapter 12

About Appending One LOB to Another

Operation PL/ISQL OCI OCCI COBOL Pro*C/C++ JDBC
About Determining Whether LOB Locator Is No Yes No No Yes No
Initialized

Length: Determining the Length of a LOB Yes Yes No Yes Yes Yes
Loading a LOB with Data from a BFILE Yes Yes No Yes Yes Yes
About Loading a BLOB with Data from a BFILE Yes No No No No No
Loading a CLOB or NCLOB with Data from a Yes No No No No No
BFILE

About LOB Array Read No Yes No No No No
LOB Array Write No Yes No No No No
Opening Persistent LOBs with the OPEN and Yes Yes Yes Yes Yes Yes
CLOSE Interfaces

Open: Determining Whether a LOB is Open Yes Yes Yes Yes Yes Yes
Patterns: Checking for Patterns in a LOB Using Yes No No Yes Yes Yes
INSTR

Reading a Portion of a LOB (SUBSTR) Yes No No Yes Yes Yes
About Reading Data from a LOB Yes Yes No Yes Yes Yes
Storage Limit, Determining: Maximum Storage Yes No No No No No
Limit for Terabyte-Size LOBs

About Trimming LOB Data Yes Yes No Yes Yes Yes
WriteNoAppend, see About Appending to a LOB . No No No No No No
About Writing Data to a LOB Yes Yes Yes Yes Yes Yes

About Appending One LOB to Another

ORACLE

This operation appends one LOB instance to another.

Preconditions

Before you can append one LOB to another, the following conditions must be met:

e Two LOB instances must exist.

* Both instances must be of the same type, for example both BLOB or both CLOB

types.

* You can pass any combination of persistent or temporary LOB instances to this

operation.

Usage Notes

Persistent LOBs: You must lock the row you are selecting the LOB from prior to
updating a LOB value if you are using the PL/SQL DBVS_LOB Package or OCI. While
the SQL | NSERT and UPDATE statements implicitly lock the row, locking the row can be
done explicitly using the SQL SELECT FOR UPDATE statement in SQL and PL/SQL
programs, or by using an OCI pi n or | ock function in OCI programs.

12-3

Chapter 12
About Appending Buffer Content to LOB

Syntax
See the following syntax references for each programmatic environment:

 PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — APPEND

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobAppend()

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

e« COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and LOB APPEND executable embedded SQL
extension

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor information on embedded
SQL statements and directives — LOB APPEND

» Java (JDBC):Oracle Database JDBC Developer’s Guidefor information on creating
and populating LOB columns in Java.

Examples

To run the following examples, you must create two LOB instances and pass them
when you call the given append operation.

Examples for this use case are provided in the following programmatic environments:
 PL/SQL (DBMS_LOB Package): | append. sql

e OCI: | append.c

e Java (JDBC): | append.j ava

" See Also:

e Example of Updating LOBs Through Updated Locators for more details
on the state of the locator after an update

e Operations Specific to Persistent and Temporary LOBs for more
information about Creating a LOB instance

About Appending Buffer Content to LOB

ORACLE

Enter a short description of your topic here (optional).
Use DBVS_LOB. wri t eappend() to append buffer content to a LOB.
See the following syntax references for each programmatic environment:

 PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — WRITEAPPEND

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

12-4

Chapter 12
About Determining Character Set Form

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and LOB APPEND executable embedded SQL
extension

Java (JDBC):Oracle Database JDBC Developer’s Guidefor information on creating
and populating LOB columns in Java.

About Determining Character Set Form

This section describes how to get the character set form of a LOB instance.

Syntax

Use the following syntax references for each programmatic environment:

PL/SQL (DBMS_LOB Package): There is no applicable syntax reference for this
operation.

C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobCharSetForm()

C++ (OCCI): Oracle C++ Call Interface Programmer's Guide
COBOL (Pro*COBOL): There is no applicable syntax reference for this operation
C/C++ (Pro*C/C++): There is no applicable syntax reference for this operation.

Java (JDBC): There is no applicable syntax reference for this operation.

Example

The example demonstrates how to determine the character set form of the foreign
language text (ad_f1textn).

This functionality is currently available only in OCI:

OCl: I getchfmec

About Determining Character Set ID

This section describes how to determine the character set ID.

ORACLE

Syntax

Use the following syntax references for each programmatic environment:

PL/SQL (DBMS_LOB Package): There is no applicable syntax reference for this
operation.

C (OCI): Oracle Call Interface Programmer's Guide "Relational Functions" — LOB
Functions, OCILobCharSetld()

C++ (OCCI): Oracle C++ Call Interface Programmer's Guide
COBOL (Pro*COBOL): There is no applicable syntax reference for this operation.
C/C++ (Pro*C/C++): There is no applicable syntax reference for this operation

Java (JDBC): There is no applicable syntax reference for this operation.

12-5

Chapter 12
Loading a LOB with Data from a BFILE

Example
This functionality is currently available only in OCI:

e OCl: lgetchar.c

Loading a LOB with Data from a BFILE

ORACLE

This operation loads a LOB with data from a BFI LE. This procedure can be used to
load data into any persistent or temporary LOB instance of any LOB data type.

Preconditions

Before you can load a LOB with data from a BFI LE, the following conditions must be
met:

e The BFI LE must exist.

e The target LOB instance must exist.

Usage Notes

Note the following issues regarding this operation.

Use LOADCLOBFROMFILE When Loading Character Data

When you use the DBMS_LOB. LOADFROWFI LE procedure to load a CLOB or NCLOB
instance, you are loading the LOB with binary data from the BFI LE and no implicit
character set conversion is performed. For this reason, using the

DBMS_LOB. LOADCLOBFROMWFI LE procedure is recommended when loading character
data.

Specifying Amount of BFILE Data to Load

The value you pass for the amount parameter to functions listed in Table 12-2 must be
one of the following:

* An amount less than or equal to the actual size (in bytes) of the BFI LE you are
loading.

* The maximum allowable LOB size (in bytes). Passing this value, loads the entire
BFI LE. You can use this technique to load the entire BFI LE without determining the
size of the BFI LE before loading. To get the maximum allowable LOB size, use the
technique described in Table 12-2.

Table 12-2 Maximum LOB Size for Load from File Operations
|

Environment Function To pass maximum LOB size,
get value of:

DBVS_LOB DBVS_LOB. LOADBLOBFROVFI LE DBMS_LOB. LOBMAXSI ZE

DBVS_LOB DBVS_LOB. LOADCLOBFROVFI LE DBMS_LOB. LOBMAXSI ZE

Cl OCl LobLoadFronFi | e2() UBBMAXVAL

06 OCl LobLoadFronFi | e() (For LOBs less UBAMAXVAL

than 4 gigabytes in size.)

12-6

Chapter 12
About Loading a BLOB with Data from a BFILE

Syntax

See the following syntax references for details on using this operation in each
programmatic environment:

PL/SQL (DBMS_LOB Package):Oracle Database PL/SQL Packages and Types
Reference"DBMS_LOB" — LOADFROMFILE.

C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OClLobLoadFromFile()

C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB LOAD, LOB OPEN, and LOB CLOSE
executable embedded SQL extension

C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guide, for more information on LOB
LOAD executable embedded SQL extension

Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working
With LOBs" — Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

PL/SQL (DBMS_LOB Package): | | oaddat . sql
OCI: | | oaddat . ¢
Java (JDBC): || oaddat . j ava

" See Also:

e The LOADBLOBFROWFI LE and LOADCLOBFROVFI LE procedures implement
the functionality of this procedure and provide improved features for
loading binary data and character data. (These improved procedures are
available in the PL/SQL environment only.) When possible, using one of
the improved procedures is recommended. See "About Loading a BLOB
with Data from a BFILE" and "Loading a CLOB or NCLOB with Data from
a BFILE" for more information.

e As an alternative to this operation, you can use SQL*Loader to load
persistent LOBs with data directly from a file in the file system. See
"About Using SQL*Loader to Load LOBs" for more information.

e Loading a CLOB or NCLOB with Data from a BFILE for more information
about DBMS_L0B. LOADCLOBFROWFI LE procedure

About Loading a BLOB with Data from a BFILE

This procedure loads a BLOB with data from a BFI LE. This procedure can be used to
load data into any persistent or temporary BLOB instance.

ORACLE

12-7

Chapter 12
About Loading a BLOB with Data from a BFILE

¢ See Also:

e "Loading a LOB with Data from a BFILE"

e Toload character data, use DBVMS_LOB. LOADCLOBFROVFI LE. See "Loading
a CLOB or NCLOB with Data from a BFILE" for more information.

e As an alternative to this operation, you can use SQL*Loader to load
persistent LOBs with data directly from a file in the file system. See
"About Using SQL*Loader to Load LOBs" for more information.

Preconditions
The following conditions must be met before calling this procedure:

* The target BLOB instance must exist.
e The source BFI LE must exist.

* You must open the BFI LE. (After calling this procedure, you must close the BFI LE
at some point.)

Usage Notes

Note the following with respect to this operation:

New Offsets Returned

Using DBVS_LOB. LOADBLOBFROVFI LE to load binary data into a BLOB returns the new
offsets of BLOB.

Specifying Amount of BFILE Data to Load

The value you pass for the amount parameter to the DBVS_LOB. LOADBLOBFROVFI LE
function must be one of the following:

* An amount less than or equal to the actual size (in bytes) of the BFI LE you are
loading.

e The maximum allowable LOB size: DBM5_LOB. LOBMAXSI ZE. Passing this value
causes the function to load the entire BFI LE. This is a useful technique for loading
the entire BFI LE without introspecting the size of the BFI LE.

¢ See Also:
Table 12-2

Syntax

See Oracle Database PL/SQL Packages and Types Reference, "DBMS_LOB" —
LOADBLOBFROMFILE procedure for syntax details on this procedure.

ORACLE 12-8

Chapter 12
Loading a CLOB or NCLOB with Data from a BFILE

Examples

This example is available in PL/SQL only. This API is not provided in other
programmatic environments. The online file is | | dbl obf . sgl . This example illustrates:

* How to use LOADBLOBFROVFI LE to load the entire BFI LE without getting its length
first.

* How to use the return value of the offsets to calculate the actual amount loaded.

Loading a CLOB or NCLOB with Data from a BFILE

ORACLE

This procedure loads a CLOB or NCLOB with character data from a BFI LE. This
procedure can be used to load data into a persistent or temporary CLOB or NCLOB
instance.

" See Also:

e "Loading a LOB with Data from a BFILE"

e To load binary data, use DBVS_LOB. LOADBLOBFROWFI LE. See "About
Loading a BLOB with Data from a BFILE" for more information.

e As an alternative to this operation, you can use SQL*Loader to load
persistent LOBs with data directly from a file in the file system. See
"About Using SQL*Loader to Load LOBs" for more information.

Preconditions

The following conditions must be met before calling this procedure:
* The target CLOB or NCLOB instance must exist.

e The source BFI LE must exist.

* You must open the BFI LE. (After calling this procedure, you must close the BFI LE
at some point.)

Usage Notes

You can specify the character set id of the BFI LE when calling this procedure. Doing
so, ensures that the character set is properly converted from the BFI LE data character
set to the destination CLOB or NCLOB character set.

Specifying Amount of BFILE Data to Load

The value you pass for the amount parameter to the DBVS_LOB. LOADCLOBFROVFI LE
function must be one of the following:

e An amount less than or equal to the actual size (in characters) of the BFI LE data
you are loading.

* The maximum allowable LOB size: DBM5_LOB. LOBVAXSI ZE

Passing this value causes the function to load the entire BFI LE. This is a useful
technique for loading the entire BFI LE without introspecting the size of the BFI LE.

12-9

Chapter 12
Determining Whether a LOB is Open

Syntax

See Oracle Database PL/SQL Packages and Types Reference, "DBMS_LOB" —
LOADCLOBFROVFI LE procedure for syntax details on this procedure.

Examples
The following examples illustrate different techniques for using this API:

e "About PL/SQL: Loading Character Data from a BFILE into a LOB"
* "About PL/SQL: Loading Segments of Character Data into Different LOBs"

About PL/SQL: Loading Character Data from a BFILE into a LOB

The following example illustrates:

* How to use default csid (0).

* How to load the entire file without calling get | engt h for the BFI LE.
e How to find out the actual amount loaded using return offsets.

This example assumes that ad_sour ce is a BFI LE in UTF8 character set format and the
database character set is UTF8. The online file is | | dcl obf . sql .

About PL/SQL: Loading Segments of Character Data into Different

LOBs

The following example illustrates:

* How to get the character set ID from the character set name using the
NLS CHARSET | D function.

e How to load a stream of data from a single BFI LE into different LOBs using the
returned offset value and the language context | ang_ct x.

* How to read a warning message.

This example assumes that ad_fil e_ext 01 is a BFI LE in JAL6TSTSET format and the
database national character set is ALL6UTF16. The online file is | | dcl obs. sql .

Determining Whether a LOB is Open

ORACLE

This operation determines whether a LOB is open.

Preconditions

The LOB instance must exist before executing this procedure.

Usage Notes

When a LOB is open, it must be closed at some point later in the session.

Syntax

Use the following syntax references for each programmatic environment:

12-10

Chapter 12
Determining Whether a LOB is Open

* PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — OPEN, | SOPEN.

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCl Lobl sOpen() .

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

e« COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and LOB DESCRIBE executable embedded
SQL extension.

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's GuideLOB DESCRI BE executable
embedded SQL extension

» Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column.

Examples

Examples are provided in the following programmatic environments:

e PL/SQL (DBMS_LOB Package): | i sopen. sql

e OCI:lisopen.c

e C++ (OCCI): No example is provided with this release.

e Java (JDBC): | i sopen.java

Java (JDBC): Checking If a LOB Is Open

Here is how to check a BLOB or a CLCB.

Checking If a CLOB Is Open

To see if a CLOB is open, your JDBC application can use the i sCpen method defined in
oracl e. sql . CLOB. The return Boolean value indicates whether the CLOB has been
previously opened or not. The i sOpen method is defined as follows:

/**
* Check whether the CLOB i s opened.
* @eturn true if the LOB is opened.
*|
public bool ean isCpen () throws SQLException

The usage example is:

CLOB clob = ...
I/ See if the CLOB is opened
bool ean i sCpen = clob.isCpen ();

Checking If a BLOB Is Open

ORACLE

To see if a BLOB is open, your JDBC application can use the i sQpen method defined in
oracl e. sqgl . BLOB. The return Boolean value indicates whether the BLOB has been
previously opened or not. The i sOpen method is defined as follows:

/**

* Check whether the BLOB i s opened.

12-11

Chapter 12
About Displaying LOB Data

* @eturn true if the LOB is opened.
*/
public bool ean isCpen () throws SQLException

The usage example is:

BLOB blob = ...
Il See if the BLOB is opened
bool ean i sOpen = bl ob.isOpen ();

About Displaying LOB Data

ORACLE

This section describes APIs that allow you to read LOB data. You can use this
operation to read LOB data into a buffer. This is useful if your application requires
displaying large amounts of LOB data or streaming data operations.

Usage Notes

Note the following when using these APIs.

Streaming Mechanism

The most efficient way to read large amounts of LOB data is to use OCl LobRead2() with
the streaming mechanism enabled.

Amount Parameter

The value you pass for the amount parameter is restricted for the APIs described in
Table 12-3.

Table 12-3 Maximum LOB Size for Amount Parameter
]

Environment Function Value of amount parameter is
limited to:
DBMS _LOB DBMS_LOB. READ The size of the buffer, 32Kbytes.
OcCl OCl LobRead() UB4MAXVAL
(For LOBs less than 4 gigabytes in Specifying this amount reads the
size.) entire file.
OocCl OCl LobRead2() UBSVAXVAL
(For LOBs of any size.) Specifying this amount reads the
entire file.
Syntax

Use the following syntax references for each programmatic environment:

 PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — OPEN, READ, CLOSE.

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —,
OCILobOpen(), OCILobRead?2(), OCILobClose().

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

12-12

Chapter 12
About Reading Data from a LOB

 COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB READ executable embedded SQL
extension.

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor information on LOB READ
executable embedded SQL extension

» Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column.

Examples

Examples are provided in the following programmatic environments:

* PL/SQL (DBMS_LOB Package): | di spl ay. sql

e OClIdisplay.c

e C++ (OCCI): No example is provided in this release.

e Java (JDBC): I display.java

About Reading Data from a LOB

ORACLE

This section describes how to read data from LOBs using OCl LobRead?2() .

Usage Notes

Note the following when using this operation.

Streaming Read in OCI

The most efficient way to read large amounts of LOB data is to use OCl LobRead?2()
with the streaming mechanism enabled using polling or callback. To do so, specify the
starting point of the read using the of f set parameter as follows:

ub8 char_ant
ub8 byte_ant
ub4 offset = 100

0;
0;
0;

OCl LobRead2(svchp, errhp, locp, &byte_ant, &char_ant, offset, bufp, bufl,
OCl _ONE_PI ECE, 0, 0, 0, 0);

When using polling mode, be sure to look at the value of the byt e_ant parameter after
each OCl LobRead2() call to see how many bytes were read into the buffer because the
buffer may not be entirely full.

When using callbacks, the | enp parameter, which is input to the callback, indicates
how many bytes are filled in the buffer. Be sure to check the | enp parameter during
your callback processing because the entire buffer may not be filled with data.

¢ See Also:

Oracle Call Interface Programmer's Guide

12-13

Chapter 12
About LOB Array Read

Chunk Size

A chunk is one or more Oracle blocks. You can specify the chunk size for the
BasicFiles LOB when creating the table that contains the LOB. This corresponds to the
data size used by Oracle Database when accessing or modifying the LOB value. Part
of the chunk is used to store system-related information and the rest stores the LOB
value. The API you are using has a function that returns the amount of space used in
the LOB chunk to store the LOB value. In PL/SQL use DBVMS_LOB. GETCHUNKSI ZE. In
OCI, use OCl LobGet ChunkSi ze() . For SecureFiles, CHUNK is an advisory size and is
provided for backward compatibility purposes.

To improve performance, you may run wri t e requests using a multiple of the value
returned by one of these functions. The reason for this is that you are using the same
unit that the Oracle database uses when reading data from disk. If it is appropriate for
your application, then you should batch reads until you have enough for an entire
chunk instead of issuing several LOB read calls that operate on the same LOB chunk.
Syntax

Use the following syntax references for each programmatic environment:

e PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — OPEN, GETCHUNKSI ZE, READ, CLCSE

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCl LobOpen(), OCl LobRead2(), OCl Lobd ose() .

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB READ executable embedded SQL
extension

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor information about LOB
READ executable embedded SQL extension

e Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working
With LOBs" — Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

e PL/SQL (DBMS_LOB Package): | read. sql

e OCl:lread.c

e Java (JDBC):lread.java

About LOB Array Read

ORACLE

This section describes how to read LOB data for multiple locators in one round trip,
using OCl LobArrayRead() .

Usage Notes

This function improves performance in reading LOBs in the size range less than about
512 Kilobytes. For an OCI application example, assume that the program has a
prepared SQL statement such as:

12-14

Chapter 12
About LOB Array Read

SELECT | obl FROM I ob_tabl e for UPDATE;

where | obl is the LOB column and | ob_array is an array of define variables
corresponding to a LOB column:

OCl LobLocator * lob_array[10];

for (i=0; i<10, i++) /* initialize array of |ocators */
lob_array[i] = OCl DescriptorAlloc(..., OCl _DTYPE LGB, ...);

OCl DefineByPos(..., 1, (dvoid *) lob_array, ... SQT_CLOB, ...);

/* Execute the statement with iters = 10 to do an array fetch of 10 locators. */
OCl St mt Execute (<service context>, <statement handl e> <error handl e>,

10, [* iters */

0, [* row of fset */

NULL, /* snapshot IN */

NULL, /* snapshot out */

OCl _DEFAULT /* node */);

ub4 array_iter = 10;
char *bufp[10];
oraub8 bufl[10];
oraub8 char _ant p[10];
oraub8 of fset[10];

for (i=0; i<10; i++4)

{

bufp[i] = (char *)malloc(1000);

bufI[i] = 1000;

offset[i] = 1;

char_antp[i] = 1000; /* Single byte fixed width char set. */
1

/* Read the 1st 1000 characters for all 10 locators in one
* round trip. Note that offset and amount need not be
* same for all the locators. */

OCl LobAr rayRead(<servi ce context>, <error handle>,
&array_iter, /* array size */
lob_array, [/* array of locators */

NULL, /* array of byte amounts */
char_antp, /* array of char anounts */
of fset, /* array of offsets */
(void **)bufp, I* array of read buffers */
bufl, I* array of buffer lengths */
OCl _ONE_PIECE, /* piece information */
NULL, /* callback context */
NULL, /* callback function */
0 /* character set ID- default */

SQLCS_IMPLICIT);/* character set form*/

for (i=0; i<10; i++)

[* Fill bufp[i] buffers with data to be witten */

ORACLE 12-15

ORACLE

Chapter 12
About LOB Array Read

strncpy (bufp[i], "Test Data------ ", 15);

bufI[i] = 1000;

of fset[i] = 50;

char_anmtp[i] = 15; /* Single byte fixed width char set. */

}

/* Wite the 15 characters fromoffset 50 to all 10
* |ocators in one round trip. Note that offset and
* amount need not be sanme for all the locators. */
*/

OCl LobArrayWite(<service context> <error handle>,
&rray_iter, /* array size */
lob_array, [/* array of locators */

NULL, /* array of byte amounts */
char_antp, /* array of char anmounts */
of fset, /* array of offsets */
(void **)bufp, [* array of read buffers */
buf !, [* array of buffer lengths */
OCl _ONE_PIECE, [/* piece information */
NULL, /* callback context */
NULL, I* callback function */
0 [* character set ID - default */

SQLCS_IMPLICIT);/* character set form*/

Streaming Support

LOB array APIs can be used to read/write LOB data in multiple pieces. This can be
done by using polling method or a callback function.Here data is read/written in
multiple pieces sequentially for the array of locators. For polling, the APl would return
to the application after reading/writing each piece with the array_i t er parameter
(OUT) indicating the index of the locator for which data is read/written. With a callback,
the function is called after reading/writing each piece with array_iter as IN
parameter.

Note that:

* ltis possible to read/write data for a few of the locators in one piece and read/write
data for other locators in multiple pieces. Data is read/written in one piece for
locators which have sufficient buffer lengths to accommodate the whole data to be
read/written.

* Your application can use different amount value and buffer lengths for each
locator.

* Your application can pass zero as the amount value for one or more locators
indicating pure streaming for those locators. In the case of reading, LOB data is
read to the end for those locators. For writing, data is written until OCl _LAST Pl ECE
is specified for those locators.

LOB Array Read in Polling Mode

The following example reads 10Kbytes of data for each of 10 locators with 1Kbyte
buffer size. Each locator needs 10 pieces to read the complete data.

OCl LobArrayRead() must be called 100 (10*10) times to fetch all the data.First we call
COCl LobArrayRead() with OCI _FI RST_PI ECE as pi ece parameter. This call returns the
first 1K piece for the first locator.Next OCl LobAr rayRead() is called in a loop until the
application finishes reading all the pieces for the locators and returns OCl _SUCCESS. In
this example it loops 99 times returning the pieces for the locators sequentially.

12-16

ORACLE

Chapter 12
About LOB Array Read

/* Fetch the locators */

/* array_iter paraneter indicates the nunber of locators in the array read.
* It is an IN paraneter for the 1st call in polling and is ignored as IN

* paraneter for subsequent calls. As OUT paraneter it indicates the |ocator
* index for which the piece is read.

*/

ub4 array_iter = 10;
char *bufp[10];
oraub8 bufl[10];

oraub8 char_ant p[10];
oraub8 of fset[10];
sword st;

for (i=0; i<10; i++4)

{

bufp[i] = (char *)malloc(1000);

bufITi] = 1000;

offset[i] = 1;

char_antp[i] = 10000; /* Single byte fixed width char set. */
}

st = OCl LobArrayRead(<service context> <error handl e>,
&rray_iter, /* array size */
lob_array, /* array of locators */

NULL, [* array of byte amounts */
char_antp, /* array of char anounts */
of fset, [* array of offsets */
(void **)bufp, /* array of read buffers */
bufl, /* array of buffer lengths */
OCl _FIRST_PIECE, /* piece information */
NULL, /* callback context */
NULL, /* call back function */
0 I* character set ID- default */

SQLCS_IMPLICIT); /* character set form*/

/* First piece for the first locator is read here.

* buf p[0] => Buffer pointer into which data is read.
* char_antp[0] => Nunber of characters read in current buffer
*/

While (st == OCl _NEED_DATA)
{
st = OCl LobArrayRead(<service context>, <error handl e>,
&rray_iter, /* array size */
lob_array, /* array of locators */

NULL, /* array of byte anmounts */
char_antp, /* array of char anounts */
of fset, /* array of offsets */
(void **)bufp, I* array of read buffers */
buf !, I* array of buffer lengths */
OCl _NEXT_PI ECE, /* piece information */
NULL, /* callback context */
NULL, I* callback function */
0, [* character set ID - default */
SQLCS_IMPLICIT);

/* array_iter returns the index of the current array elenment for which

12-17

ORACLE

Chapter 12
About LOB Array Read

* data is read. for exanple, aray_iter = 1 inplies first locator,

* array_iter = 2 inplies second |ocator and so on.

*

* |ob_array[array_iter - 1]=> Lob locator for which data is read.

* bufp[array_iter - 1] => Buffer pointer into which data is read.

* char_antp[array_iter - 1] => Nunmber of characters read in current buffer
*|

/* Consune the data here */

}

LOB Array Read with Callback

The following example reads 10Kbytes of data for each of 10 locators with 1Kbyte
buffer size. Each locator needs 10 pieces to read all the data. The callback function is
called 100 (10*10) times to return the pieces sequentially.

/* Fetch the locators */

ub4 array_iter = 10;
char *bufp[10];

oraub8 bufl[10];

oraub8 char _ant p[10];
oraub8 of fset[10];
sword st;

for (i=0; i<10; i++)

{

bufp[i] = (char *)malloc(1000);

bufI[i] = 1000;

offset[i] = 1,

char_antp[i] = 10000; /* Single byte fixed width char set. */
}

st = OCl LobArrayRead(<service context>, <error handle>,

garray_iter, /* array size */
lob_array, [/* array of locators */

NULL, /* array of byte amounts */
char_antp, /* array of char anounts */
of f set, /* array of offsets */

(void **)bufp, /* array of read buffers */
bufl, /* array of buffer lengths */
OCl _FIRST_PIECE, /* piece information */
ctx, /* cal | back context */
cbk_read_| ob, /* call back function */
0, [* character set ID - default */
SQCS_IMPLICIT);

/* Cal | back function for LOB array read. */
sh4 cbk_read_| ob(dvoid *ctxp, ub4 array_iter, CONST dvoid *bufxp, oraub8 |en,
ubl piece, dvoid **changed_buf pp, oraub8 *changed_| enp)
{
static ub4 piece_count = 0;
pi ece_count ++;
switch (piece)
{
case OCl _LAST_PI ECE:
| *--- buffer processing code goes here ---*/
(void) printf("callback read the %l th piece(last piece) for %th locator \n\n",

12-18

Chapter 12
About LOB Array Read

pi ece_count, array_iter);
pi ece_count = 0;
br eak;
case OCl _FI RST_PI ECE:
/*--- buffer processing code goes here ---*/
(void) printf("callback read the 1st piece for %th locator\n",
array_iter);
[* --Optional code to set changed_bufpp and changed_lenp if the buffer needs
to be changed dynamcally --*/
br eak;
case OCl _NEXT_PI ECE:
/*--- buffer processing code goes here ---*/
(void) printf("callback read the % th piece for %lth |ocator\n",
pi ece_count, array_iter);
/* --Optional code to set changed_bufpp and changed_lenp if the buffer
must be changed dynamically --*/
br eak;
defaul t:
(void) printf("callback read error: unkown piece = %l.\n", piece);
return OCl _ERROR;

}
return OCI_CONTI NUE;

Polling LOB Array Read

The next example is polling LOB data in OCl LobAr rayRead() with variable ant p, bufl,
and of f set .

/* Fetch the locators */

ub4 array_iter = 10;
char *bufp[10];

oraub8 bufl[10];

oraub8 char _ant p[10];
oraub8 of fset[10];
sword st;

for (i=0; i<10; i++)

{

bufp[i] = (char *)malloc(1000);

bufI[i] = 1000;

offset[i] = 1,

char_antp[i] = 10000; /* Single byte fixed width char set. */
}

/* For 3rd |ocator read data in 500 bytes piece fromoffset 101. Amount
* is 2000, that is, total number of pieces is 2000/500 = 4.

*/

of fset[2] = 101; bufl[2] = 500; char_antp[2] = 2000;

/* For 6th |ocator read data in 100 bytes piece fromoffset 51. Amount

* is 0 indicating pure polling, that is, data is read till the end of
* the LOB is reached.
*/

of fset[5] = 51; bufl[5] = 100; char_antp[5] = O;

/* For 8th |ocator read 100 bytes of data in one piece. Note ampunt
* is less than buffer length indicating single piece read.

ORACLE 12-19

Chapter 12

About LOB Array Read

*|
offset[7] = 61; bufl[7] = 200; char_antp[7] = 100;
st = OCl LobArrayRead(<service context> <error handl e>,

&array_iter, /* array size */

lob_array, /* array of locators */

NULL, [* array of byte amounts */

char_antp, /* array of char anounts */

of fset, [* array of offsets */

(void **)bufp, /* array of read buffers */

bufl, /* array of buffer lengths */

OCl _FIRST_PIECE, /* piece information */

NULL, /* callback context */

NULL, /* call back function */

0 I* character set ID- default */

SQLCS_IMPLICIT); /* character set form*/

/* First piece for the first locator is read here.

* buf p[0] => Buffer pointer into which data is read.
* char_antp[0] => Nunber of characters read in current buffer
*|
while (st == OCl _NEED DATA)
{
st = OCl LobArrayRead(<service context>, <error handl e>,
&rray_iter, /* array size */
lob_array, /* array of locators */
NULL, /* array of byte amounts */
char_antp, /* array of char anounts */
of fset, /* array of offsets */
(void **)bufp, I* array of read buffers */
bufl, /* array of buffer lengths */
OCl _NEXT_PIECE, /* piece information */
NULL, /* callback context */
NULL, I* callback function */
0, /* character set ID - default */
SQLCS_IMPLICIT);
/* array_iter returns the index of the current array elenment for which
* data is read. for exanple, aray_iter = 1 inplies first |ocator,
* array_iter = 2 inplies second |ocator and so on.
*
* lob_array[array_iter - 1]=> Lob | ocator for which data is read.
* bufp[array_iter - 1] => Buffer pointer into which data is read.
* char_antp[array_iter - 1]=>Nunber of characters read in current buffer
*|
/* Consune the data here */
}
Syntax

Use the following syntax references for the OCI programmatic environment:

C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCl LobArrayRead() .

ORACLE 12-20

Chapter 12
Reading a Portion of a LOB (SUBSTR)

Example

An example is provided in the following programmatic environment:

OCI: Ireadarr.c

Reading a Portion of a LOB (SUBSTR)

This section describes how to read a portion of a LOB using SUBSTR.

Syntax

Use the following syntax references for each programmatic environment:

PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — SUBSTR, OPEN, CLOSE

C (OCD): There is no applicable syntax reference for this use case
C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guide for information on LOBS,
usage notes on LOB Statements, and ALLOCATE, LOB OPEN, LOB READ, LOB
CLOSE executable embedded SQL extensions

C/C++ (Pro*C/C++):Pro*C/C++ Programmer's GuideLOB READ executable
embedded SQL extension

Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

PL/SQL (DBMS_LOB Package): | substr. sql

OCI: No example is provided with this release.

C++ (OCCI): No example is provided with this release.
Java (JDBC): | substr.java

Comparing All or Part of Two LOBs

This section describes how to compare all or part of two LOBs.

ORACLE

Syntax

Use the following syntax references for each programmatic environment:

PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — COMPARE.

C (OCI): There is no applicable syntax reference for this use case.
C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

COBOL (Pro*COBOL)Pro*COBOL Programmer's Guideor information on LOBs,
usage notes on LOB Statements, and EXECUTE executed embedded SQL

12-21

Chapter 12
Patterns: Checking for Patterns in a LOB Using INSTR

C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor more information on
EXECUTE executed embedded SQL

e Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:
* PL/SQL (DBMS_LOB Package): | conpar e. sql

e C (OCI): No example is provided with this release.

* C++ (OCCI): No example is provided with this release.

e Java (JDBC): | conpare.java

Patterns: Checking for Patterns in a LOB Using INSTR

This section describes how to see if a pattern exists in a LOB using | NSTR.

Syntax
Use the following syntax references for each programmatic environment:

* PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — INSTR

e C (OCI): There is no applicable syntax reference for this use case.
e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and EXECUTE executed embedded SQL

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor more information on
EXECUTE executed embedded SQL

» Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working
With LOBs" — Creating and Populating a BLOB or CLOB Column

Examples
Examples are provided in the following programmatic environments:

* PL/SQL (DBMS_LOB Package): I instr. sql
e C (OCI): No example is provided with this release.
e C++ (OCCI): No example is provided with this release.

e Java (JDBC):linstr.java

Length: Determining the Length of a LOB

This section describes how to determine the length of a LOB.

Syntax

Use the following syntax references for each programmatic environment:

ORACLE 12-22

Chapter 12
Copying All or Part of One LOB to Another LOB

* PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — GETLENGTH

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
CCl LobGet Lengt h2()

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and LOB DESCRIBE executable embedded
SQL extension

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor more information on LOB
DESCRIBE executable embedded SQL extension

e Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:
e« PL/SQL (DBMS_LOB Package) | | engt h. sql

e OCl:Ilength.c

e C++ (OCCI): No example is provided with this release.

e Java (JDBC): |l ength.java

Copying All or Part of One LOB to Another LOB

ORACLE

This section describes how to copy all or part of a LOB to another LOB. These APIs
copy an amount of data you specify from a source LOB to a destination LOB.

Usage Notes

Note the following issues when using this API.

Specifying Amount of Data to Copy

The value you pass for the anount parameter to the DBMS_LOB. COPY function must be
one of the following:

* An amount less than or equal to the actual size of the data you are loading.

* The maximum allowable LOB size: DBM5_LOB. LOBMAXSI ZE. Passing this value
causes the function to read the entire LOB. This is a useful technique for reading
the entire LOB without introspecting the size of the LOB.

Note that for character data, the amount is specified in characters, while for binary
data, the amount is specified in bytes.

Locking the Row Prior to Updating

If you plan to update a LOB value, then you must lock the row containing the LOB prior
to updating. While the SQL | NSERT and UPDATE statements implicitly lock the row,
locking is done explicitly by means of a SQL SELECT FOR UPDATE statement in SQL and
PL/SQL programs, or by using an CCl pi n or | ock function in OCI programs.

12-23

Chapter 12
Copying a LOB Locator

¢ See Also:

Example of Updating LOBs Through Updated Locators for more details on
the state of the locator after an update

Syntax
See the following syntax references for each programmatic environment:

 PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — COPY

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobCopy2

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

e« COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and LOB COPY executable embedded SQL
extension

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor information on LOB COPY
executable embedded SQL extension

» Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:
* PL/SQL (DBMS_LOB Package): | copy. sql

e OCl:lcopy.c

e Java (JDBC): |l copy.java

Copying a LOB Locator

ORACLE

This section describes how to copy a LOB locator. Note that different locators may
point to the same or different data, or to current or outdated data.

¢ See Also:

Read-Consistent Locators for more details about how to assign one LOB to
another using PL/SQL using the : = operator

Syntax
Use the following syntax references for each programmatic environment:

* PL/SQL (DBMS_LOB Package): Refer to "Read-Consistent Locators" for
information on assigning one lob locator to another

12-24

Chapter 12
Equality: Checking If One LOB Locator Is Equal to Another

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
CCl LobAssi gn(), OCl Lobl sEqual ()

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB Statements, and ALLOCATE and LOB ASSIGN executable
embedded SQL extensions

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's GuideSELECT, LOB ASSIGN
executable embedded SQL extensions

e Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working
With LOBs" — Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

e PL/SQL (DBMS_LOB Package): | copyl oc. sql

e OCl:Icopyloc.c

e C++ (OCCI): No example is provided with this release.

e Java (JDBC): | copyl oc. | ava

Equality: Checking If One LOB Locator Is Equal to Another

ORACLE

This section describes how to determine whether one LOB locator is equal to another.
If two locators are equal, then this means that they refer to the same version of the
LOB data.

¢ See Also:

* Table 12-1

 "Read-Consistent Locators"

Syntax
Use the following syntax references for each programmatic environment:

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
CCl LobAssi gn(), OCl Lobl sEqual ()

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide
e COBOL (Pro*COBOL): There is no applicable syntax reference for this use case.

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's GuideLOB ASSIGN executable
embedded SQL extension

e Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

12-25

Chapter 12
About Determining Whether LOB Locator Is Initialized

PL/SQL: No example is provided with this release.
OCl: lequal . c
C++ (OCCI): No example is provided with this release.

Java (JDBC): | equal . j ava

About Determining Whether LOB Locator Is Initialized

This section describes how to determine whether a LOB locator is initialized.

¢ See Also:
Table 12-1

Syntax

Use the following syntax references for each programmatic environment:

PL/SQL (DBMS_LOB Package): There is no applicable syntax reference for this
use case.

C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
CCl LobLocat orIslnit()

C++ (OCCI): Oracle C++ Call Interface Programmer's Guide
COBOL (Pro*COBOL): There is no applicable syntax reference for this use case.
C/C++ (Pro*C/C++)Pro*C/C++ Programmer's Guide

Java (JDBC): There is no applicable syntax reference for this use case.

Examples

Examples are provided in the following programmatic environments:

PL/SQL (DBMS_LOB Package): No example is provided with this release.
OCl:linit.c
C (OCCI)): No example is provided with this release.

Java (JDBC): No example is provided with this release.

About Appending to a LOB

This section describes how to write-append the contents of a buffer to a LOB.

ORACLE

¢ See Also:
Table 12-1

12-26

ORACLE

Chapter 12
About Appending to a LOB

Usage Notes

Note the following issues regarding usage of this API.

Writing Singly or Piecewise
The wr i t eappend operation writes a buffer to the end of a LOB.

For OCI, the buffer can be written to the LOB in a single piece with this call;
alternatively, it can be rendered piecewise using callbacks or a standard polling
method.

Writing Piecewise: When to Use Callbacks or Polling

If the value of the piece parameter is OCl _FI RST_PI ECE, then data must be provided
through callbacks or polling.

» If a callback function is defined in the cbf p parameter, then this callback function is
called to get the next piece after a piece is written to the pipe. Each piece is written
from buf p.

* If no callback function is defined, then OCl LobW i t eAppend2() returns the
OCl _NEED DATA error code. The application must call OCl LobW i t eAppend2() again
to write more pieces of the LOB. In this mode, the buffer pointer and the length
can be different in each call if the pieces are of different sizes and from different
locations. A piece value of OCl _LAST PI ECE terminates the piecewise write.

Locking the Row Prior to Updating

Prior to updating a LOB value using the PL/SQL DBM5_LOB package or the OCI, you
must lock the row containing the LOB. While the SQL | NSERT and UPDATE statements
implicitly lock the row, locking is done explicitly by means of an SQL SELECT FOR
UPDATE statement in SQL and PL/SQL programs, or by using an OCl pi n or | ock
function in OCI programs.

¢ See Also:

Example of Updating LOBs Through Updated Locators for more details on
the state of the locator after an update

Syntax
Use the following syntax references for each programmatic environment:

* PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — \\Rl TEAPPEND

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCl LobW i t eAppend2()

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

e COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements

12-27

Chapter 12
About Writing Data to a LOB

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor more information on
Embedded SQL Statements and Directives

» Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working
With LOBs" — Creating and Populating a BLOB or CLOB Column

Examples

Examples are provided in the following programmatic environments:

* PL/SQL (DBMS_LOB Package): | wri t eap. sql

e OClLIwiteap.c

e C++ (OCCI): No example is provided with this release.

* Java (JDBC): lwiteap.java

About Writing Data to a LOB

ORACLE

This section describes how to write the contents of a buffer to a LOB.

" See Also:

e Table 12-1
e About Reading Data from a LOB

Usage Notes

Note the following issues regarding usage of this API.

Stream Write

The most efficient way to write large amounts of LOB data is to use OCl LobW i t e2()
with the streaming mechanism enabled, and using polling or a callback. If you know
how much data is written to the LOB, then specify that amount when calling

OCl LobW i te2() . This ensures that LOB data on the disk is contiguous. Apart from
being spatially efficient, the contiguous structure of the LOB data makes reads and
writes in subsequent operations faster.

Chunk Size

A chunk is one or more Oracle blocks. You can specify the chunk size for the LOB
when creating the table that contains the LOB. This corresponds to the data size used
by Oracle Database when accessing or modifying the LOB value. Part of the chunk is
used to store system-related information and the rest stores the LOB value. The API
you are using has a function that returns the amount of space used in the LOB chunk
to store the LOB value. In PL/SQL use DBMS_LOB. GETCHUNKSI ZE. In OClI, use

OCl LobGet ChunkSi ze() .

Use a Multiple of the Returned Value to Improve Write Performance

To improve performance, run write requests using a multiple of the value returned by
one of these functions. The reason for this is that the LOB chunk is versioned for every

12-28

ORACLE

Chapter 12
About Writing Data to a LOB

writ e operation. If all wi t es are done on a chunk basis, then no extra or excess
versioning is incurred or duplicated. If it is appropriate for your application, then you
should batch writes until you have enough for an entire chunk instead of issuing
several LOB write calls that operate on the same LOB chunk.

Locking the Row Prior to Updating

Prior to updating a LOB value using the PL/SQL DBM5_LOB Package or OCI, you must
lock the row containing the LOB. While the SQL | NSERT and UPDATE statements
implicitly lock the row, locking is done explicitly by means of a SQL SELECT FOR UPDATE
statement in SQL and PL/SQL programs, or by using an OCl pi n or | ock function in
OCI programs.

¢ See Also:

Example of Updating LOBs Through Updated Locators for more details on
the state of the locator after an update

Using DBMS_LOB.WRITE to Write Data to a BLOB

When you are passing a hexadecimal string to DBMS_LOB.WRITE() to write data to a
BLOB, use the following guidelines:

e The amount parameter should be <= the buffer | engt h parameter

e Thel engt h of the buffer should be ((amount *2) - 1). This guideline exists because
the two characters of the string are seen as one hexadecimal character (and an
implicit hexadecimal-to-raw conversion takes place), that is, every two bytes of the
string are converted to one raw byte.

The following example is correct:

decl are

blob | oc BLOB;

rawbuf RAW 10);

an_offset INTEGER : = 1;

an_anount Bl NARY_I NTEGER : = 10;
BEG N

sel ect blob _col into blob oc froma_table
where id = 1;

rawbuf :='1234567890123456789" ;

dbns_| ob. wite(blob_oc, an_anount, an_offset,
rawbuf) ;

conmi t;
END;

Replacing the value for an_anount in the previous example with the following values,
yields error message, ora_21560:

an_anmount Bl NARY_| NTEGER : = 11,

or

an_anount BI NARY | NTEGER : = 19;

12-29

Chapter 12
LOB Array Write

Syntax
Use the following syntax references for each programmatic environment:

 PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — WRITE

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobWrite2().

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

e« COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB WRITE executable embedded SQL
extension

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's GuideLOB WRITE executable
embedded SQL extension

« Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working
With LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples

Examples are provided in the following programmatic environments:

 PL/SQL (DBMS_LOB Package): | wri te. sql

* OCl:Iwite.c

e Java (JDBC):lwrite.java

LOB Array Write

ORACLE

This section describes how to write LOB data for multiple locators in one round trip,
using OCl LobArrayWite().

Usage Notes

¢ See Also:

"About LOB Array Read" for examples of array read/write.

LOB Array Write in Polling Mode

The following example writes 10Kbytes of data for each of 10 locators with a 1K buffer
size. OCl LobArrayWite() has to be called 100 (10 times 10) times to write all the data.
The function is used in a similar manner to OCl LobW it e2().

/* Fetch the locators */

[* array_iter paraneter indicates the nunber of locators in the array read.

* It is an IN paraneter for the 1st call in polling and is ignored as IN

* paranmeter for subsequent calls. As an OUT paraneter it indicates the |ocator
* index for which the piece is witten.

*/

12-30

ORACLE

ub4 array_iter = 10
char *bufp[10];
oraub8 bufl[10];
oraub8 char_antp[10];
oraub8 of fset[10];
sword st;

int i,

for (i=0; i<10; i++)

{
bufp[i] = (char *)ma
buf I [i] = 1000;
[* Fill bufp here. *

offset[i] = 1;
char_antp[i] = 10000
}
for (i =1; i <= 10;

/* Fill up bufp[i-1]
buf p[i-1] */

[10c(1000);

/

; /* Single

i +4)

byte fixed width char set. */

Chapter 12
LOB Array Write

here. The first piece for ith locator would be witten from

st = OClLobArrayWite(<service context> <error handle>,
&rray_iter, /* array size */
lob_array, /* array of locators */

(void **)

for (] =2;) <10

{

I* Fill up bufp[i-1]
bufp[i-1] */

NULL, /* array of byte amounts */
char_antp, /* array of char anmounts */

of fset, /* array of offsets */

buf p, /* array of wite buffers */

buf !, [* array of buffer lengths */

OCl _FIRST_PIECE, /* piece information */

NULL, /* callback context */

NULL, [* cal | back function */

0 [* character set ID- default */

SQLCS_IMPLICIT); /* character set form*/

j +4)

here. The jth piece for ith locator would be witten from

st = OClLobArrayWite(<service context> <error handle>,

(void *

&array_iter, /*
lob_array, [/*
NULL, | *

char_antp, [/*

of fset, *
*) buf p, *

bufl, *

OCl _NEXT_PI ECE,

NULL,

NULL,

0,

SQLCS_IMPLICIT);

array size */

array of locators */

array of byte amounts */
array of char amounts */
array of offsets */

array of wite buffers */
array of buffer lengths */
[* piece information */

/* call back context */

/* callback function */

/* character set ID- default */

[* array_iter returns the index of the current array el enment for which
* data is being witten. for exanple, aray_iter = 1 inplies first locator,
* array_iter = 2 inplies second locator and so on. Here i = array_iter.

*

12-31

Chapter 12
LOB Array Write

* |ob_array[array_iter - 1] => Lob locator for which data is witten.
* bufp[array_iter - 1] => Buffer pointer fromwhich data is witten.
* char_antp[array_iter - 1] => Nunber of characters witten in
* the piece just witten
*/
}
[* Fill up bufp[i-1] here. The last piece for ith locator would be witten from
bufp[i -1] */
st = OClLobArrayWite(<service context> <error handle>,
&array_iter, /* array size */
lob_array, /* array of locators */
NULL, /* array of byte anmounts */
char_antp, /* array of char anounts */
of fset, /* array of offsets */
(void **)bufp, /* array of wite buffers */
bufl, I* array of buffer lengths */
OCl _LAST_PIECE, /* piece information */
NULL, /* callback context */
NULL, /* cal I back function */
0, /* character set ID - default */
SQLCS_IMPLICIT);
}

LOB Array Write with Callback

The following example writes 10Kbytes of data for each of 10 locators with a 1K buffer
size. A total of 100 pieces must be written (10 pieces for each locator). The first piece
is provided by the OCl LobArrayWite() call. The callback function is called 99 times to
get the data for subsequent pieces to be written.

/* Fetch the locators */

ub4 array_iter = 10;
char *bufp[10];
oraub8 bufl[10];

oraub8 char_antp[10];
oraub8 of fset[10];
sword st;

for (i=0; i<10; i++)

{
bufp[i] = (char *)malloc(1000);
buf I [i] = 1000;
offset[i] = 1;
char_antp[i] = 10000;

}

/* Single byte fixed width char set. */

size */

of locators */
of
of
of
of

byte anounts */
char anounts */
of fsets */

wite buffers */

st = OClLobArrayWite(<service context> <error handle>,
&array_iter, /* array
lob_array, [/* array
NULL, [* array
char_anmtp, /* array
of fset, [* array
(void **)bufp, /* array
bufl, /* array

OCl_FI RST_PI ECE,

ORACLE

of buffer lengths */

/* piece information */

12-32

Chapter 12

LOB Array Write
ctX, /* call back context */
cbk_wite_|ob I* callback function */
0, [* character set ID - default */
SQLCS_IMPLICIT);

/* Callback function for LOB array wite. */

sb4 cbk_write_lob(dvoid *ctxp, ub4 array_iter, dvoid *bufxp, oraub8 *Ienp,
ubl *piecep, ubl *changed_buf pp, oraub8 *changed_| enp)

{

static ub4 piece_count = 0;

pi ece_count ++;

printf (" %lth piece witten for %lth locator \n\n", piece_count, array_iter);

/*-- code to fill bufxp with data goes here. *lenp should reflect the size and
* should be less than or equal to MAXBUFLEN -- */

/* --Optional code to set changed_bufpp and changed_lenp if the buffer nust

* be changed dynamcally --*/

if (this is the last data buffer for current |ocator)
*pi ecep = OCl _LAST_PI ECE;
elseif (thisis the first data buffer for the next |ocator)
*pi ecep = OCl _FI RST_PI ECE;
pi ece_count = 0;
el se
*pi ecep = OCl _NEXT_PI ECE;

return OCI_CONTI NUE;
}

Polling LOB Data in Array Write

The next example is polling LOB data in OCl LobArrayWite() with variable ant p, buf |,
and of f set .

/* Fetch the locators */

ub4 array_iter = 10;
char *bufp[10];
oraub8 bufl[10];
oraub8 char_ant p[10];
oraub8 of fset[10];
sword st;
int i, i
int piece_count;
for (i=0; i<10; i++4)
{
buf p[i] = (char *)malloc(1000);
bufI[i] = 1000;
I* Fill bufp here. */

offset[i] = 1,
char_antp[i] = 10000; /* Single byte fixed width char set. */

/* For 3rd |ocator wite data in 500 bytes piece fromoffset 101. Anmpunt

ORACLE 12-33

Chapter 12
LOB Array Write

* is 2000, that is, total number of pieces is 2000/500 = 4.
*|
of fset[2] = 101; bufl[2] = 500; char_antp[2] = 2000;

/* For 6th |ocator wite data in 100 bytes piece fromoffset 51. Amount
* is O indicating pure polling, that is, datais witten

* till QO _LAST _PIECE

*/

of fset[5] = 51; bufl[5] = 100; char_antp[5] = O;

/* For 8th locator wite 100 bytes of data in one piece. Note anmpunt
* is less than buffer length indicating single piece wite.

*|

offset[7] = 61; bufl[7] = 200; char_antp[7] = 100;

for (i =1; i <=10; i++)

I* Fill up bufp[i-1] here. The first piece for ith locator would be witten from
bufp[i-1] */

/* Calcul ate number of pieces that nust be witten */
pi ece_count = char_antp[i-1]/bufl[i-1];

/* Single piece case */
if (char_amp[i-1] <= bufl[i-1])
pi ece_count = 1;

[* Zero anpunt indicates pure polling. So we can wite as many
* pieces as needed. Let us wite 50 pieces.
*|
if (char_anmtp[i-1] == 0)
pi ece_count = 50;

st = OClLobArrayWite(<service context> <error handle>,
&rray_iter, /* array size */
lob_array, /* array of locators */

NULL, /* array of byte amounts */
char_antp, /* array of char anmounts */
of fset, /* array of offsets */
(void **)bufp, /* array of wite buffers */
buf !, [* array of buffer lengths */
OCl _FIRST_PIECE, /* piece information */
NULL, /* cal | back context */
NULL, [* cal | back function */
0 [* character set ID- default */

SQLCS_IMPLICIT); /* character set form*/
for (j =2;] < piece_count; j++)

[* Fill up bufp[i-1] here. The jth piece for ith locator would be witten
* frombufp[i-1] */

st = OCl LobArrayWite(<service context>, <error handle>,
&rray_iter, /* array size */
lob_array, /* array of locators */

NULL, /* array of byte amounts */
char_antp, /* array of char amounts */
of fset, /* array of offsets */

(void **)bufp, [* array of wite buffers */
buf !, [* array of buffer lengths */

OCl _NEXT_PIECE, /* piece information */

ORACLE 12-34

Chapter 12
About Trimming LOB Data

NULL, /* cal | back context */
NULL, /* cal I back function */
0, /* character set ID - default */
SQLCS_IMPLICIT);
[* array_iter returns the index of the current array el enment for which
* data is being witten. for exanple, aray_iter = 1 inplies first locator,
* array_iter = 2 inplies second locator and so on. Here i = array_iter.
*
* |ob_array[array_iter - 1] => Lob locator for which data is witten.
* bufp[array_iter - 1] => Buffer pointer fromwhich data is witten.
* char_antp[array_iter - 1] => Nunber of characters witten in
* the piece just witten
*/
}
[* Fill up bufp[i-1] here. The last piece for ith locator would be witten from

* bufpli -1] */

/* If piece_count is 1 it is a single piece wite. */

if (piece_count[i] !'=1)

st = OClLobArrayWite(<service context>, <error handle>,
Sarray_iter, [* array size */
lob_array, /* array of locators */
NULL, /* array of byte amounts */
char_antp, /* array of char amounts */
of fset, /* array of offsets */
(void **)bufp, /* array of wite buffers */

bufl, [* array of buffer lengths */
OCl _LAST_PIECE, /* piece information */
NULL, [* callback context */
NULL, [* cal |l back function */
0, [* character set ID - default */
SQLCS_IMPLICIT);

}

Syntax

Use the following syntax references for the OCI programmatic environment:

C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —

OCl LobArrayWite().

Example

An example is provided in the following programmatic environment:

OCI: lwritearr.c

About Trimming LOB Data

This section describes how to trim a LOB to the size you specify.

ORACLE

12-35

ORACLE

Chapter 12
About Trimming LOB Data

¢ See Also:
Table 12-1

Usage Notes

Note the following issues regarding usage of this API.

Locking the Row Prior to Updating

Prior to updating a LOB value using the PL/SQL DBMS_LOB Package, or OCI, you must
lock the row containing the LOB. While the SQL | NSERT and UPDATE statements
implicitly lock the row, locking is done explicitly by means of:

e A SELECT FOR UPDATE statement in SQL and PL/SQL programs.

* AnQC pinorlock function in OCI programs.

" See Also:

Example of Updating LOBs Through Updated Locators for more details on
the state of the locator after an update

Syntax
Use the following syntax references for each programmatic environment:

 PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB"— TRIM

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILobTrim2().

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

 COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and LOB TRIM executed embedded SQL
extension

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guide for more information on LOB
TRIM executed embedded SQL extension

» Java (JDBC): Oracle Database JDBC Developer's Guide Chapter 7, "Working
With LOBs" — Creating and Populating a BLOB or CLOB Column.

Examples
Examples are provided in the following programmatic environments:

 PL/SQL (DBMS_LOB Package): I tri m sql

« OClItrimc

e C++ (OCCI): No example is provided with this release.
e Java (JDBC):Itrimjava

12-36

Chapter 12
About Erasing Part of a LOB

About Erasing Part of a LOB

ORACLE

This section describes how to erase part of a LOB.

¢ See Also:
Table 12-1

Usage Notes

Note the following issues regarding usage of this API.

Locking the Row Prior to Updating

Prior to updating a LOB value using the PL/SQL DBM5_LOB Package or OCI, you must
lock the row containing the LOB. While | NSERT and UPDATE statements implicitly lock
the row, locking is done explicitly by means of a SELECT FOR UPDATE statement in SQL
and PL/SQL programs, or by using the OCl pi n or | ock function in OCI programs.

" See Also:

Example of Updating LOBs Through Updated Locators f or more details on
the state of the locator after an update

Syntax
Use the following syntax references for each programmatic environment:

e PL/SQL (DBMS_LOB Package): Oracle Database PL/SQL Packages and Types
Reference "DBMS_LOB" — ERASE

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCl LobErase2() .

e C++ (OCCI): Oracle C++ Call Interface Programmer's Guide

* COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBS,
usage notes on LOB statements, and LOB ERASE executable embedded SQL
extension.

e C/C++ (Pro*C/C++):Pro*C/C++ Programmer's Guidefor more information on LOB
ERASE executable embedded SQL extension

* Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column

Examples
Examples are provided in the following programmatic environments:

 PL/SQL (DBMS_LOB Package): | er ase. sql

e OCl:lerase.c

12-37

Chapter 12
Determining Whether a LOB instance Is Temporary

e C++ (OCCI): No example is provided with this release.

 Java (JDBC): |l erase.java

Determining Whether a LOB instance Is Temporary

This section describes how to determine whether a LOB instance is temporary.

¢ See Also:
Table 12-1

Syntax
Use the following syntax references for each programmatic environment:

 PL/SQL (DBMS_LOB): Oracle Database PL/SQL Packages and Types Reference
"DBMS_LOB" — ISTEMPORARY, FREETEMPORARY

e C (OCI): Oracle Call Interface Programmer's Guide "LOB Functions" —
OCILoblsTemporary().

e« COBOL (Pro*COBOL)Pro*COBOL Programmer's Guidefor information on LOBs,
usage notes on LOB statements, and embedded SQL and LOB DESCRIBE
executable embedded SQL extension

e C/C++ (Pro*C/C++): Pro*C/C++ Programmer's Guidefor more information on LOB
DESCRIBE executable embedded SQL extension

e Java (JDBC): Oracle Database JDBC Developer's Guide, "Working With LOBs" —
Creating and Populating a BLOB or CLOB Column.

Examples

Examples are provided in the following programmatic environments:
 PL/SQL (DBMS_LOB Package): | i stenp. sql

e OCllistenp.c

Java (JDBC): Determining Whether a BLOB Is Temporary

ORACLE

To see if a BLOB is temporary, the JDBC application can either use the i sTenporary

instance method to determine whether the current BLOB object is temporary, or pass
the BLOB object to the static i sTenpor ary method to determine whether the specified
BLOB object is temporary. These two methods are defined inl i st enpb. j ava.

This JDBC API replaces previous work-arounds that use DBMS_LOB. i sTenpor ar y() .

To determine whether a CLOB is temporary, the JDBC application can either use the
i sTenpor ary instance method to determine whether the current CLOB object is
temporary, or pass the CLOB object to the static i sTenpor ary method. These two
methods are defined in | i st enpc. j ava.

12-38

Chapter 12
Converting a BLOB to a CLOB

Converting a BLOB to a CLOB

You can convert a BLOB instance to a CLOB using the PL/SQL procedure
DBMS_LOB. CONVERTTCCLOB.

This technique is convenient if you have character data stored in binary format that
you want to store in a CLOB. You specify the character set of the binary data when
calling this procedure.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details on
syntax and usage of this procedure

Converting a CLOB to a BLOB

You can convert a CLOB instance to a BLOB instance using the PL/SQL procedure
DBMS_LOB. CONVERTTOBLOB. This technique is a convenient way to convert character
data to binary data using LOB APlIs. See

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details on
syntax and usage of this procedure

Ensuring Read Consistency

ORACLE

This script can be used to ensure that hot backups can be taken of tables that have
NOLOGA NG or FI LESYSTEM LI KE_LOGE NG LOBs and have a known recovery point with
no read inconsistencies:

ALTER DATABASE FORCE LOGG NG
SELECT CHECKPOI NT_CHANGE# FROM V$DATABASE; --Start SCN

SCN (System Change Number) is a stamp that defines a version of the database at
the time that a transaction is committed.

Perform the backup.
Run the next script:

ALTER SYSTEM CHECKPOI NT GLOBAL;
SELECT CHECKPOI NT_CHANGE# FROM V$DATABASE; --End SCN
ALTER DATABASE NO FORCE LOGAE NG

Back up the archive logs generated by the database. At the minimum, archive logs
between start SCN and end SCN (including both SCN points) must be backed up.

12-39

ORACLE

Chapter 12
Ensuring Read Consistency

To restore to a point with no read inconsistency, restore to end SCN as your
incomplete recovery point. If recovery is done to an SCN after end SCN, there can be
read inconsistency in the NOLOGGE NG LOBs.

For SecureFiles, if a read inconsistency is found during media recovery, the database
treats the inconsistent blocks as holes and fills BLOBs with 0's and CLOBs with fill
characters.

12-40

Application Design with LOBs

This part covers issues that you must consider when designing LOB applications.
This part contains these chapters:

* LOB Storage with Applications
* Advanced Design Considerations
e Overview of Supplied LOB APIs

¢ Performance Guidelines

ORACLE

LOB Storage with Applications

Applications that contain tables with LOB columns may use both SECUREFI LE and
BASI CFI LE LOBs. If a feature applies to only one kind of LOB, this is stated.

Topics:

Tables That Contain LOBs

Data Types for LOB Columns

LOB Storage Parameters

LOB Columns Indexing

LOB Manipulation in Partitioned Tables

LOBs in Index Organized Tables

Restrictions for LOBs in Partitioned Index-Organized Tables
Updating LOBs in Nested Tables

Tables That Contain LOBs

When creating tables that contain LOBs, use these guidelines:

Topics:

Persistent LOBs Initialized to NULL or Empty

Initializing LOBs

Initializing Persistent LOB Columns and Attributes to a Value
Initializing BFILEs to NULL or a File Name

Persistent LOBs Initialized to NULL or Empty

You can set a persistent LOB — that is, a LOB column in a table, or a LOB attribute in
an object type that you defined— to be NULL or empty:

ORACLE

Set a Persistent LOB to NULL: A LOB set to NULL has no locator. A NULL value is
stored in the row in the table, not a locator. This is the same process as for all
other data types.

Set a Persistent LOB to Empty: By contrast, an empty LOB stored in a table is a
LOB of zero length that has a locator. So, if you SELECT from an empty LOB
column or attribute, then you get back a locator which you can use to populate the
LOB with data using supported programmatic environments, such as OCI or PL/
SQL(DBMS_LOB).

13-1

Chapter 13
Tables That Contain LOBs

¢ See Also:

Overview of Supplied LOB APIs for more information on supported
environments

Setting a Persistent LOB to NULL

You may want to set a persistent LOB value to NULL upon inserting the row.
These are possible situations where this is useful:

* In cases where you do not have the LOB data at the time of the | NSERT.

* If you want to use a SELECT statement, such as the following, to determine whether
or not the LOB holds a NULL value:

SELECT COUNT (*) FROM print_nedia WHERE ad_graphic IS NOT NULL;

SELECT COUNT (*) FROM print_media WHERE ad_graphic |'S NULL;

Note that you cannot call OCI or DBMS_LOB functions on a NULL LOB, so you must then
use an SQL UPDATE statement to reset the LOB column to a non-NULL (or empty)
value.

The point is that you cannot make a function call from the supported programmatic
environments on a LOB that is NULL. These functions only work with a locator, and if
the LOB column is NULL, then there is no locator in the row.

Setting a Persistent LOB to Empty

You can initialize a persistent LOB to EMPTY rather that NULL. Doing so, enables you to
obtain a locator for the LOB instance without populating the LOB with data.

* You set a persistent LOB to EMPTY, using the SQL function EMPTY_BLOB() or
EMPTY_CLOB() in the | NSERT statement, as follows.

I NSERT INTO a_tabl e VALUES (EMPTY_BLOB());

As an alternative, you can use the RETURNI NG clause to obtain the LOB locator in one
operation rather than calling a subsequent SELECT statement:

DECLARE
Lob_loc BLOB;

BEG N
| NSERT | NTO a_tabl e VALUES (EMPTY_BLOB()) RETURNING bl ob_col |NTO Lob_| oc;
/* Now use the | ocator Lob_|oc to populate the BLOB with data */

END;

Initializing LOBs

ORACLE

You can initialize the LOBs in pri nt _medi a by using the following | NSERT statement:

| NSERT I NTO print_nedia VALUES (1001, EMPTY_CLOB(), EMPTY_CLOB(), NULL,
EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

This sets the value of ad_sour cet ext, ad_fltextn, ad_conposi te, and ad_phot o to an
empty value, and sets ad_gr aphi ¢ to NULL.

13-2

Chapter 13
Data Types for LOB Columns

¢ See Also:

Table for LOB Examples: The PM Schema print_media Table for the
print_medi a table.

Initializing Persistent LOB Columns and Attributes to a Value

You can initialize the LOB column or LOB attributes to a value that contains more than
4G bytes of data, the limit before release 10.2.

See Also:

Data Interface for Persistent LOBs

Initializing BFILES to NULL or a File Name

A BFI LE can be initialized to NULL or to a filename. To do so, you can use the
BFI LENAME() function.

¢ See Also:
"BFILENAME and Initialization".

Restriction on First Extent of a LOB Segment

The first extent of any segment requires at least 2 blocks (if FREELI ST GROUPS was 0).
That is, the initial extent size of the segment should be at least 2 blocks. LOBs
segments are different because they need at least 3 blocks in the first extent if the
LOB is a BasicFiles LOB and 16 blocks if the LOB is a SecureFiles LOB.

If you try to create a LOB segment in a permanent dictionary managed tablespace with
initial = 2 blocks, then it still works because it is possible for segments in permanent
dictionary-managed tablespaces to override the default storage setting of the
tablespaces.

But if uniform, locally managed tablespaces or dictionary managed tablespaces of the
temporary type, or locally managed temporary tablespaces have an extent size of 2
blocks, then LOB segments cannot be created in these tablespaces. This is because
in these tablespace types, extent sizes are fixed and the default storage setting of the
tablespaces is not ignored.

Data Types for LOB Columns

When selecting a data type, consider the following three topics:

* LOBs Compared to LONG and LONG RAW Types

ORACLE 13-3

Chapter 13
Data Types for LOB Columns

e Varying-Width Character Data Storage in LOBs
e Converting Character Sets Implicitly with LOBs

LOBs Compared to LONG and LONG RAW Types

Table 13-1 lists the similarities and differences between LOBs, LONGs, and LONG
RAW types.

Table 13-1 LOBs Vs. LONG RAW

LOB Data Type LONG and LONG RAW Data Type

You can store multiple LOBs in a single row You can store only one LONG or LONG RAWin each
row.

LOBs can be attributes of a user-defined This is not possible with either a LONG or LONG
data type RAW

Only the LOB locator is stored in the table In the case of a LONG or LONG RAWthe entire
column; BLOB and CLOB data can be stored value is stored in the table column.

in separate tablespaces and BFI LE data is

stored as an external file.

For inline LOBSs, the database stores LOBs
that are less than approximately 4000 bytes
of data in the table column.

When you access a LOB column, you can ~ When you access a LONG or LONGRAW the entire
choose to fetch the locator or the data. value is returned.

A LOB can be up to 128 terabytes or more A LONG or LONG RAWinstance is limited to 2
in size depending on your block size. gigabytes in size.

There is greater flexibility in manipulating Less flexibility in manipulating data in a random,
data in a random, piece-wise manner with piece-wise manner with LONG or LONG RAW
LOBs. LOBs can be accessed at random dat a. LONGs must be accessed from the

offsets. beginning to the desired location.

You can use Oracle Golden Gate to Replication is not possible with LONG or LONG
replicate LOBs. RAW.

Varying-Width Character Data Storage in LOBs

Varying-width character data in CLOB and NCLOB data types is stored in an internal
format that is compatible with UCS2 Unicode character set format. This ensures that
there is no storage loss of character data in a varying-width format. Also note the
following if you are using LOBSs to store varying-width character data:

* You can create tables containing CLOB and NCLOB columns even if you use a
varying-width CHAR or NCHAR database character set.

* You can create a table containing a data type that has a CLOB attribute regardless
of whether you use a varying-width CHAR database character set.

Converting Character Sets Implicitly with LOBs

ORACLE

For CLOB and NCLOB instances used in OCI (Oracle Call Interface), or any of the
programmatic environments that access OCI functionality, character set conversions
are implicitly performed when translating from one character set to another.

13-4

Chapter 13
LOB Storage Parameters

* Use the DBM5_LOB. LOADCLOBFROVFI LE API to perform an implicit conversion from
binary data to character data when loading to a CLOB or NCLOB.

With the exception of DBM5_LOB. LOADCLOBFROVFI LE, LOB APIs do not perform implicit
conversions from binary data to character data.

For example, when you use the DBVMS_LOB. LOADFROWFI LE API to populate a CLOB or
NCLOB, you are populating the LOB with binary data from a BFI LE. In this case, you
must perform character set conversions on the BFI LE data before calling

DBMVS_LOB. LOADFROVFI LE.

¢ See Also:

Oracle Database Globalization Support Guide for more detail on character
set conversions.

" Note:

The database character set cannot be changed from a single-byte to a
multibyte character set if there are populated user-defined CLOB columns in
the database tables. The national character set cannot be changed between
AL16UTF16 and UTF8 if there are populated user-defined NCLOB columns in the
database tables.

Note:

LOBs are not supported when the Container Database root and Pluggable
Databases are in different character sets. For more information, refer to
Relocating a PDB Using CREATE PLUGGABLE DATABASE.

LOB Storage Parameters

ORACLE

You should consider certain LOB storage characteristics when designing tables with
LOB storage. For a discussion of SECUREFI LE parameters:
" See Also:

¢ "CREATE TABLE with LOB Storage"
¢ "ALTER TABLE with LOB Storage"

Topics:
e Inline and Out-of-Line LOB Storage

e Defining Tablespace and Storage Characteristics for Persistent LOBs

13-5

Chapter 13
LOB Storage Parameters

Inline and Out-of-Line LOB Storage

ORACLE

LOB columns store locators that reference the location of the actual LOB value.

Actual LOB values are stored either in the table row (inline) or outside of the table row
(out-of-line), depending on the column properties you specify when you create the
table, and depending the size of the LOB.

LOB values are stored out-of-line when any of the following situations apply:

* If you explicitly specify DI SABLE STORAGE | N ROWfor the LOB storage clause when
you create the table.

» If the size of the LOB is greater than approximately 4000 bytes (4000 minus
system control information), regardless of the LOB storage properties for the
column.

e If you update a LOB that is stored out-of-line and the resulting LOB is less than
approximately 4000 bytes, it is still stored out-of-line.

LOB values are stored inline when any of the following conditions apply:

* When the size of the LOB stored in the given row is small, approximately 4000
bytes or less, and you either explicitly specify ENABLE STORAGE | N ROWor the LOB
storage clause when you create the table, or when you do not specify this
parameter (which is the default).

* When the LOB value is NULL (regardless of the LOB storage properties for the
column).

Using the default LOB storage properties (inline storage) can allow for better database
performance; it avoids the overhead of creating and managing out-of-line storage for
smaller LOB values. If LOB values stored in your database are frequently small in size,
then using inline storage is recommended.

¢ Note:

e LOB locators are always stored in the row.

A LOB locator always exists for any LOB instance regardless of the LOB
storage properties or LOB value - NULL, empty, or otherwise.

e Ifthe LOB is created with DI SABLE STORAGE | N ROWNproperties and the
BasicFiles LOB holds any data, then a minimum of one CHUNK of out-of-
line storage space is used; even when the size of the LOB is less than
the CHUNK size.

e Ifa LOB column is initialized with EMPTY_CLOB() or EMPTY_BLOB(), then
no LOB value exists, not even NULL. The row holds a LOB locator only.
No additional LOB storage is used.

e LOB storage properties do not affect BFI LE columns. BFI LE data is
always stored in operating system files outside the database.

13-6

Chapter 13
LOB Storage Parameters

Defining Tablespace and Storage Characteristics for Persistent LOBs

When defining LOBSs in a table, you can explicitly indicate the tablespace and storage
characteristics for each persistent LOB column.

To create a BasicFiles LOB, the BASI CFl LE keyword is optional but is recommended
for clarity, as shown in the following example:

CREATE TABLE Contai nsLOB tab (n NUMBER, ¢ CLOB)
lob (c) STORE AS BASI CFl LE segnane (TABLESPACE | obtbsl CHUNK 4096
PCTVERSI ON 5
NOCACHE LOGA NG
STORAGE (MAXEXTENTS 5)

)

For SecureFiles, the SECUREFI LE keyword is necessary, as shown in the following
example (assuming TABLESPACE | obt bs1 is ASSM):

CREATE TABLE Contai nsLOB_tabl (n NUMBER, c¢ CLOB)
lob (c) STORE AS SECUREFI LE sfsegnanme (TABLESPACE | obt bsl
RETENTI ON AUTO
CACHE LOGG NG
STORAGE (MAXEXTENTS 5)

)i

¢ Note:

There are no tablespace or storage characteristics that you can specify for
external LOBs (BFI LEs) as they are not stored in the database.

If you must modify the LOB storage parameters on an existing LOB column, then use
the ALTERTABLE . .. MOVE statement. You can change the RETENTI ON, PCTVERSI ON,
CACHE, NOCACHE LOGA NG, NOLOGGE NG, or STORAGE settings. You can also change the
TABLESPACE using the ALTER TABLE ... MOVE statement.

Assigning a LOB Data Segment Name

As shown in the previous example, specifying a name for the LOB data segment
makes for a much more intuitive working environment. When querying the LOB data
dictionary views USER_LOBS, ALL_LOBS, DBA_LOBS, you see the LOB data segment that
you chose instead of system-generated names.

" See Also:

Oracle Database Reference for more information about initialization
parameters

ORACLE 13-7

Chapter 13
LOB Storage Parameters

LOB Storage Characteristics for LOB Column or Attribute

LOB storage characteristics that can be specified for a LOB column or a LOB attribute
include the following:

* TABLESPACE
* PCTVERSI ON or RETENTI ON

Note that you can specify either PCTVERSI ON or RETENTI ON for BasicFiles LOBSs, but
not both. For SecureFiles, only the RETENTI ON parameter can be specified.

o CACHE/NOCACHE/ CACHE READS
* LOGG NG NOLOGGE NG

* CHUNK
* ENABLE/DI SABLE STORAGE | N ROW
* STORAGE

For most users, defaults for these storage characteristics are sufficient. If you want to
fine-tune LOB storage, then consider the following guidelines.
¢ See Also:

e STORAGE clause in Oracle Database SQL Language Reference
e RETENTI ON parameter in Oracle Database SQL Language Reference

TABLESPACE and LOB Index

The LOB index is an internal structure that is strongly associated with LOB storage.
This implies that a user may not drop the LOB index and rebuild it.

¢ Note:

The LOB index cannot be altered.

The system determines which tablespace to use for LOB data and LOB index
depending on your specification in the LOB storage clause:

» If you do not specify a tablespace for the LOB data, then the tablespace of the
table is used for the LOB data and index.

* If you specify a tablespace for the LOB data, then both the LOB data and index
use the tablespace that was specified.

Tablespace for LOB Index in Non-Partitioned Table

When creating a table, if you specify a tablespace for the LOB index for a non-
partitioned table, then your specification of the tablespace is ignored and the LOB

ORACLE 13-8

Chapter 13
LOB Storage Parameters

index is co-located with the LOB data. Partitioned LOBs do not include the LOB index
syntax.

Specifying a separate tablespace for the LOB storage segments enables a decrease
in contention on the tablespace of the table.

PCTVERSION

ORACLE

When a BasicFiles LOB is modified, a new version of the BasicFiles LOB page is
produced in order to support consistent read of prior versions of the BasicFiles LOB
value.

PCTVERSI ON is the percentage of all used BasicFiles LOB data space that can be
occupied by old versions of BasicFiles LOB data pages. As soon as old versions of
BasicFiles LOB data pages start to occupy more than the PCTVERSI ON amount of used
BasicFiles LOB space, Oracle Database tries to reclaim the old versions and reuse
them. In other words, PCTVERSI ON is the percent of used BasicFiles LOB data blocks
that is available for versioning old BasicFiles LOB data.

PCTVERSI ON has a default of 10 (%), a minimum of 0, and a maximum of 100.
To decide what value PCTVERSI ON should be set to, consider the following:
e How often BasicFiles LOBs are updated?

e How often the updated BasicFiles LOBs are read?

Table 13-2 provides some guidelines for determining a suitable PCTVERS| ON value
given an update percentage of 'X'.

Table 13-2 Recommended PCTVERSION Settings
|

BasicFiles LOB Update BasicFiles LOB Read Pattern PCTVERSION
Pattern

Updates X% of LOB data Reads updated LOBs X%

Updates X% of LOB data Reads LOBs but not the updated LOBs 0%

Updates X% of LOB data Reads both updated and non-updated LOBs 2X%

Never updates LOB Reads LOBs 0%

If your application requires several BasicFiles LOB updates concurrent with heavy
reads of BasicFiles LOB columns, then consider using a higher value for PCTVERSI ON,
such as 20%.

Setting PCTVERSI ON to twice the default value allows more free pages to be used for
old versions of data pages. Because large queries may require consistent reads of
BasicFiles LOB columns, it may be useful to retain old versions of BasicFiles LOB
pages. In this case, BasicFiles LOB storage may grow because the database does not
reuse free pages aggressively.

If persistent BasicFiles LOB instances in your application are created and written just
once and are primarily read-only afterward, then updates are infrequent. In this case,
consider using a lower value for PCTVERSI ON, such as 5% or lower.

The more infrequent and smaller the BasicFiles LOB updates are, the less space must
be reserved for old copies of BasicFiles LOB data. If existing BasicFiles LOBs are

13-9

Chapter 13
LOB Storage Parameters

known to be read-only, then you could safely set PCTVERSI ON to 0% because there
would never be any pages needed for old versions of data.

RETENTION Parameter for BasicFiles LOBs

You can specify the RETENTI ON parameter in the LOB storage clause of the CREATE
TABLE or ALTER TABLE statement as an alternative to the PCTVERSI ON parameter,.
Doing so, configures the LOB column to store old versions of LOB data for a period of
time, rather than using a percentage of the table space. For example:

CREATE TABLE Contai nsLOB_tab (n NUMBER, ¢ CLOB)
lob (c) STORE AS BASI CFl LE segnane (TABLESPACE | obtbsl CHUNK 4096
RETENTI ON
NOCACHE LOGE NG
STORAGE (MAXEXTENTS 5)

)

The RETENTI ON parameter is designed for use with UNDO features of the database, such
as Flashback Versions Query. When a LOB column has the RETENTI ON property set,
old versions of the LOB data are retained for the amount of time specified by the
UNDO_RETENTI ON parameter.

Note the following with respect to the RETENTI ON parameter:

* UNDOSQL is not enabled for LOB columns as it is with other data types. You must
set the RETENTI ON property on a LOB column to use Undo SQL on LOB data.

* You cannot set the value of the RETENTI ON parameter explicitly. The amount of
time for retention of LOB versions in determined by the UNDO_RETENTI ON
parameter.

» Usage of the RETENTI ON parameter is only supported in Automatic Undo
Management mode. You must configure your table for use with Automatic Undo
Management before you can set RETENTI ON on a LOB column. ASSM is required
for LOB RETENTI ON to be in effect for BasicFiles LOBs. The RETENTI ON parameter
of the SQL (in the STORE AS clause) is silently ignored if the BasicFiles LOB resides
in an MSSM tablespace.

* The LOB storage clause can specify RETENTI ON or PCTVERSI ON, but not both.

¢ See Also:

— Oracle Database Development Guide for more information on using
flashback features of the database.

— Oracle Database SQL Language Reference for details on LOB
storage clause syntax.

RETENTION Parameter for SecureFiles LOBs

Specifying the RETENTI ON parameter for SecureFiles indicates that the database
manages consistent read data for the SecureFiles storage dynamically, taking into
account factors such as the UNDO mode of the database.

ORACLE 13-10

Chapter 13
LOB Storage Parameters

» Specify MAX if the database is in FLASHBACK mode to limit the size of the LOB UNDO
retention in bytes. If you specify MAX, then you must also specify the MAXSI ZE
clause in the st orage_cl ause.

» Specify AUTOIf you want to retain UNDO sufficient for consistent read purposes only.
This is the default.

» Specify NONE if no UNDOis required for either consistent read or flashback
purposes.

The default RETENTI ON for SecureFiles is AUTO.

CACHE / NOCACHE / CACHE READS

When creating tables that contain LOBs, use the cache options according to the
guidelines in Table 13-3:

Table 13-3 When to Use CACHE, NOCACHE, and CACHE READS

Cache Mode Read Write

CACHE READS Frequently Once or occasionally
CACHE Frequently Frequently

NOCACHE (default) Once or occasionally Never

CACHE / NOCACHE / CACHE READS: LOB Values and Buffer Cache

* CACHE: LOB pages are placed in the buffer cache for faster access.

* NOCACHE: As a parameter in the STORE AS clause, NOCACHE specifies that LOB
values are not brought into the buffer cache.

« CACHE READS: LOB values are brought into the buffer cache only during read
and not during write operations.

NOCACHE is the default for both SecureFiles and BasicFiles LOBs.

" Note:

Using the CACHE option results in improved performance when reading and
writing data from the LOB column. However, it can potentially age other non-
LOB pages out of the buffer cache prematurely.

LOGGING / NOLOGGING Parameter for BasicFiles LOBs

ORACLE

The [NOLOGG NG parameter is applied to using LOBs in the same manner as for other
table operations. In the usual case, if the [NOLOGGE NG clause is omitted, then this
means that neither NOLOGA NG nor LOGA NGis specified and the logging attribute of the

table or table partition defaults to the logging attribute of the tablespace in which it
resides.

For LOBs, there is a further alternative depending on how CACHE is stipulated.

13-11

Chapter 13
LOB Storage Parameters

» CACHE is specified and [NOLOGG NG clause is omitted. LOGE NGis automatically
implemented (because you cannot have CACHE NOLOGA NG).

e CACHE is not specified and [NOLOGAE NG clause is omitted. The process defaults
in the same way as it does for tables and partitioned tables. That is, the
[NOILOGE NG value is obtained from the tablespace in which the LOB segment
resides.

The following issues should also be kept in mind.

LOBs Always Generate Undo for LOB Index Pages

Regardless of whether LOGGE NG or NOLOGA NGis set, LOBs never generate rollback
information (undo) for LOB data pages because old LOB data is stored in versions.

Rollback information that is created for LOBs tends to be small because it is only for
the LOB index page changes.

When LOGGING is Set Oracle Generates Full Redo for LOB Data Pages

NOLOGAE NGis intended to be used when a customer does not care about media
recovery.

Thus, if the disk/tape/storage media fails, then you cannot recover your changes from
the log because the changes were never logged.

NOLOGGING is Useful for Bulk Loads or Inserts.

For instance, when loading data into the LOB, if you do not care about redo and can
just start the load over if it fails, set the LOB data segment storage characteristics to
NOCACHE NOLOGG NG. This provides good performance for the initial load of data.

Once you have completed loading data, if necessary, use ALTER TABLE to modify the
LOB storage characteristics for the LOB data segment for normal LOB operations, for
example, to CACHE or NOCACHE LOGAE NG.

" Note:
CACHE implies that you also get LOGA NG.

LOGGING/FILESYSTEM_LIKE_LOGGING for SecureFiles LOBs

The NOLOGG NG and LOGA NG parameters are applied to using LOBs in the same
manner as for other table operations.

In the usual case, if the | oggi ng_cl ause is omitted, then the SecureFiles inherits its
logging attribute from the tablespace in which it resides. In this case, if NOLOGA NG is
the default value, the SecureFiles defaults to FI LESYSTEM LI KE_LOGGE NG.

ORACLE 13-12

Chapter 13
LOB Storage Parameters

< Note:

Using the CACHE option results in improved performance when reading and
writing data from the LOB column. However, it can potentially age other non-
LOB pages out of the buffer cache prematurely.

CACHE Implies LOGGING

For SecureFiles, there is a further alternative depending on how CACHE is specified:

e If CACHE is specified and the LOGA NG clause is omitted, then LOGAE NGis used.

» If CACHE is not specified and the logging_clause is omitted. Then the process
defaults in the same way as it does for tables and partitioned tables. That is, the
LOGA NG value is obtained from the tablespace in which the LOB value resides. If
the tablespace is NOLOGA NG, then the SecureFiles defaults to
FI LESYSTEM LI KE_LOGG NG.

Keep the following issues in mind.

SecureFiles and an Efficient Method of Generating REDO and UNDO

This means that Oracle Database determines if it is more efficient to generate REDO
and UNDO for the change to a block, similar to heap blocks, or if it generates a version
and full REDO of the new block similar to BasicFiles LOBs.

FILESYSTEM LIKE LOGGING is Useful for Bulk Loads or Inserts

For instance, when loading data into the LOB, if you do not care about REDOand can
just start the load over if it fails, set the LOB data segment storage characteristics to
FI LESYSTEM LI KE_LOGA NG. This provides good performance for the initial load of data.

Once you have completed loading data, if necessary, use ALTER TABLE to modify the
LOB storage characteristics for the LOB data segment for normal LOB operations. For
example, to CACHE or NOCACHE LOGA NG,

CHUNK

A chunk is one or more Oracle blocks.

You can specify the chunk size for the BasicFiles LOB when creating the table that
contains the LOB. This corresponds to the data size used by Oracle Database when
accessing or modifying the LOB value. Part of the chunk is used to store system-
related information and the rest stores the LOB value. The API you are using has a
function that returns the amount of space used in the LOB chunk to store the LOB
value. In PL/SQL use DBMS_LOB. GETCHUNKSI ZE. In OCI, use OCl LobGet ChunkSi ze() .

ORACLE 13-13

Chapter 13
LOB Storage Parameters

< Note:

If the tablespace block size is the same as the database block size, then
CHUNK is also a multiple of the database block size. The default CHUNK size is
equal to the size of one tablespace block, and the maximum value is 32K.

¢ See Also:

"Terabyte-Size LOB Support" for information about maximum LOB sizes

The Value of CHUNK

Once the value of CHUNK is chosen (when the LOB column is created), it cannot be
changed.

Because you cannot change the value CHUNK, it is important that you choose a value
which optimizes your storage and performance requirements. For SecureFiles, CHUNK
is an advisory size and is provided for backward compatibility purposes.

Space Considerations

The value of CHUNK does not matter for LOBs that are stored inline.

Inline storage occurs when ENABLE STORAGE | N ROWis set, and the size of the LOB
locator and the LOB data is less than approximately 4000 bytes. However, when the
LOB data is stored out-of-line, it always takes up space in multiples of the CHUNK
parameter. This can lead to a large waste of space if your data is small, but the CHUNK
is set to a large number. Table 13-4 illustrates this point:

Table 13-4 Data Size and CHUNK Size

Data Size CHUNK Size Disk Space Used to Store the LOB Space Utilization
(Percent)

3500 enable storage in row irrelevant 3500 in row 100

3500 disable storage in row 32 KB 32 KB 10

3500 disable storage in row 4 KB 4 KB 90

33 KB 32 KB 64 KB 51

2 GB +10 32 KB 2GB + 32 KB 99+

Performance Considerations

ORACLE

It is more efficient to access LOBSs in big chunks.

You can set CHUNK to the data size most frequently accessed or written. For example, if
only one block of LOB data is accessed at a time, then set CHUNK to the size of one
block. If you have big LOBs, and read or write big amounts of data, then choose a
large value for CHUNK.

13-14

Chapter 13
LOB Storage Parameters

Set INITIAL and NEXT to Larger than CHUNK

If you explicitly specify storage characteristics for the LOB, then make sure that
I NI TI AL and NEXT for the LOB data segment storage are set to a size that is larger
than the CHUNK size.

For example, if the database block size is 2KB and you specify a CHUNK of 8KB, then
make sure that | NI TI AL and NEXT are bigger than 8KB and preferably considerably
bigger (for example, at least 16KB).

Put another way: If you specify a value for I NI TI AL, NEXT, or the LOB CHUNK size, then
make sure they are set in the following manner:

e CHUNK <= NEXT
e CHUNK<=INTIAL

ENABLE or DISABLE STORAGE IN ROW Clause

The ENABLE | DI SABLE STORACE | N ROWclause is used to indicate whether the LOB
should be stored inline (in the row) or out-of-line. If the LOB is saved | N ROV

» Exadata pushdown is enabled for LOBs without compression and encryption, and
LOBs with securefile compression

* In-Memory is enabled for LOBs without compression and encryption

" Note:

You may not alter this specification once you have made it if you ENABLE
STORAGE | N ROW then you cannot alter it to DI SABLE STORAGE | N ROWand
vice versa.

The default is ENABLE STORAGE | N ROW

Guidelines for ENABLE or DISABLE STORAGE IN ROW

ORACLE

The maximum amount of LOB data stored in the row is the maximum VARCHAR? size
(4000). This includes the control information and the LOB value. If you indicate that the
LOB should be stored in the row, once the LOB value and control information is larger
than approximately 4000, then the LOB value is automatically moved out of the row.

This suggests the following guidelines:

The default, ENABLE STORAGE IN ROW, is usually the best choice for the following
reasons:

e Small LOBs: If the LOB is small (less than approximately 4000 bytes), then the
whole LOB can be read while reading the row without extra disk I/O.

* Large LOBs: If the LOB is big (greater than approximately 4000 bytes), then the
control information is still stored in the row if ENABLE STORAGE IN ROW is set,
even after moving the LOB data out of the row. This control information could
enable us to read the out-of-line LOB data faster.

13-15

Chapter 13
LOB Columns Indexing

However, in some cases DI SABLE STORAGE | N ROWis a better choice. This is because
storing the LOB in the row increases the size of the row. This impacts performance if
you are doing a lot of base table processing, such as full table scans, multi-row
accesses (range scans), or many UPDATE/SELECT to columns other than the LOB
columns.

LOB Columns Indexing

There are different techniques you can use to index LOB columns.

" Note:

After you move a LOB column any existing table indexes must be rebuilt.

Topics:

e Domain Indexing on LOB Columns

¢ Text Indexes on LOB Columns

* Function-Based Indexes on LOBs

e Extensible Indexing on LOB Columns

e Oracle Text Indexing Support for XML

Domain Indexing on LOB Columns

You might be able to improve the performance of queries by building indexes
specifically attuned to your domain. Extensibility interfaces provided with the database
allow for domain indexing, a framework for implementing such domain specific
indexes.

¢ Note:

You cannot build a B-tree or bitmap index on a LOB column.

¢ See Also:

Oracle Database Data Cartridge Developer's Guide for information on
building domain specific indexes.

Text Indexes on LOB Columns

Depending on the nature of the contents of the LOB column, one of the Oracle Text
options could also be used for building indexes.

ORACLE 13-16

Chapter 13
LOB Columns Indexing

For example, if a text document is stored in a CLOB column, then you can build a text
index to speed up the performance of text-based queries over the CLOB column.

¢ See Also:

Oracle Text Application Developer's Guide for an example of using a CLOB
column to store text data

Function-Based Indexes on LOBs

A function-based index is an index built on an expression. It extends your indexing
capabilities beyond indexing on a column. A function-based index increases the
variety of ways in which you can access data.

Function-based indexes cannot be built on nested tables or LOB columns. However,
you can build function-based indexes on VARRAYSs.

Like extensible indexes and domain indexes on LOB columns, function-based indexes
are also automatically updated when a DML operation is performed on the LOB
column. Function-based indexes are also updated when any extensible index is
updated.

" See Also:

Oracle Database Development Guide for more information on using function-
based indexes.

Extensible Indexing on LOB Columns

ORACLE

The database provides extensible indexing, a feature which enables you to define new
index types as required. This is based on the concept of cooperative indexing where a
data cartridge and the database build and maintain indexes for data types such as text
and spatial for example, for On-line-Analytical Processing (OLAP).

The cartridge is responsible for defining the index structure, maintaining the index
content during load and update operations, and searching the index during query
processing. The index structure can be stored in Oracle as heap-organized, or an
index-organized table, or externally as an operating system file.

To support this structure, the database provides an indextype. The purpose of an
indextype is to enable efficient search and retrieval functions for complex domains
such as text, spatial, image, and OLAP by means of a data cartridge. An indextype is
analogous to the sorted or bit-mapped index types that are built-in within the Oracle
Server. The difference is that an indextype is implemented by the data cartridge
developer, whereas the Oracle kernel implements built-in indexes. Once a new
indextype has been implemented by a data cartridge developer, end users of the data
cartridge can use it just as they would built-in indextypes.

When the database system handles the physical storage of domain indexes, data
cartridges

13-17

Chapter 13
LOB Manipulation in Partitioned Tables

» Define the format and content of an index. This enables cartridges to define an
index structure that can accommodate a complex data object.

* Build, delete, and update a domain index. The cartridge handles building and
maintaining the index structures. Note that this is a significant departure from the
medicine indexing features provided for simple SQL data types. Also, because an
index is modeled as a collection of tuples, in-place updating is directly supported.

* Access and interpret the content of an index. This capability enables the data
cartridge to become an integral component of query processing. That is, the
content-related clauses for database queries are handled by the data cartridge.

By supporting extensible indexes, the database significantly reduces the effort needed
to develop high-performance solutions that access complex data types such as LOBs.

Extensible Optimizer

The extensible optimizer functionality allows authors of user-defined functions and
indexes to create statistics collections, selectivity, and cost functions. This information
is used by the optimizer in choosing a query plan. The cost-based optimizer is thus
extended to use the user-supplied information.

Extensible indexing functionality enables you to define new operators, index types,
and domain indexes. For such user-defined operators and domain indexes, the
extensible optimizer functionality allows users to control the three main components
used by the optimizer to select an execution plan: statistics, selectivity, and cost.

¢ See Also:

Oracle Database Data Cartridge Developer's Guide

Oracle Text Indexing Support for XML

You can create Oracle Text indexes on CLOB columns and perform queries on XML
data.

¢ See Also:

e Oracle XML Developer's Kit Programmer's Guide
e Oracle Text Reference

e Oracle Text Application Developer's Guide

LOB Manipulation in Partitioned Tables

You can partition tables that contain LOB columns.
Topics:

e About Manipulating LOBs in Partitioned Tables

ORACLE 13-18

Chapter 13
LOB Manipulation in Partitioned Tables

» Partitioning a Table Containing LOB Columns

» Creating an Index on a Table Containing Partitioned LOB Columns
* Moving Partitions Containing LOBs

» Splitting Partitions Containing LOBs

* Merging Partitions Containing LOBs

About Manipulating LOBs in Partitioned Tables

As a result, LOBs can take advantage of all of the benefits of partitioning including the
following:

» LOB segments can be spread between several tablespaces to balance I/O load
and to make backup and recovery more manageable.

* LOBs in a partitioned table become easier to maintain.

» LOBs can be partitioned into logical groups to speed up operations on LOBs that
are accessed as a group.

This section describes some of the ways you can manipulate LOBSs in partitioned
tables.

Partitioning a Table Containing LOB Columns

ORACLE

LOBs are supported in RANGE partitioned, LIST partitioned, and HASH patrtitioned
tables. Composite heap-organized tables can also have LOBs.

You can partition a table containing LOB columns using the following techniques:

* When the table is created using the PARTI TI ON BY ... clause of the CREATE
TABLE statement.

* Adding a partition to an existing table using the ALTER TABLE ... ADD PARTI TI ON
clause.

* Exchanging partitions with a table that has partitioned LOB columns using the
ALTER TABLE ... EXCHANGE PARTI Tl ON clause. Note that EXCHANGE PARTI TI ON
can only be used when both tables have the same storage attributes, for example,
both tables store LOBs out-of-line.

Creating LOB partitions at the same time you create the table (in the CREATE TABLE
statement) is recommended. If you create partitions on a LOB column when the table
is created, then the column can hold LOBs stored either inline or out-of-line LOBs.

After a table is created, new LOB partitions can only be created on LOB columns that
are stored out-of-line. Also, partition maintenance operations, SPLI T PARTI TI ON and
MERGE PARTI TI ONS, only work on LOB columns that store LOBs out-of-line.

Note:

Once a table is created, storage attributes cannot be changed

13-19

Chapter 13
LOB Manipulation in Partitioned Tables

¢ See Also:

* LOB Storage Parameters for more information about LOB storage
attributes

* Restrictions for LOBs in Partitioned Index-Organized Tables for
additional information on LOB restrictions

Creating an Index on a Table Containing Partitioned LOB Columns

To improve the performance of queries, you can create indexes on partitioned LOB
columns. For example:

CREATE | NDEX i ndex_nane
ON tabl e_name (LOB_colum_1, LOB colum_2, ...) LOCAL;

Note that only domain and function-based indexes are supported on LOB columns.
Other types of indexes, such as unique indexes are not supported with LOBs.

Moving Partitions Containing LOBs

You can move a LOB partition into a different tablespace. This is useful if the
tablespace is no longer large enough to hold the partition. To do so, use the ALTER
TABLE ... MOVE PARTI TI ONclause. For example:

ALTER TABLE current _table MOVE PARTI TI ON partition_name
TABLESPACE destination_tabl e_space
LOB (col utm_name) STORE AS (TABLESPACE current _tabl espace);

Splitting Partitions Containing LOBs

You can split a partition containing LOBSs into two equally sized patrtitions using the
ALTER TABLE ... SPLIT PARTI Tl ONclause. Doing so permits you to place one or both
new partitions in a new tablespace. For example:

ALTER TABLE tabl e_name SPLIT PARTITION partition_nane
AT (partition_range_upper_bound)
I NTO (PARTITION partition_nane,
PARTI TI ON new_partition_nanme TABLESPACE new t abl espace_name
LOB (col utm_nane) STORE AS (TABLESPACE t abl espace_nane)

Merging Partitions Containing LOBs

ORACLE

You can merge partitions that contain LOB columns using the ALTER TABLE ... MERGE
PARTI TI ONS clause.

This technique is useful for reclaiming unused partition space. For example:

ALTER TABLE tabl e_nane

MERGE PARTITIONS partition_1, partition_2

I NTO PARTI TI ON new_partition TABLESPACE new_t abl espace_name
LOB (col um_nane) store as (TABLESPACE tabl espace_nane)

13-20

Chapter 13
LOBs in Index Organized Tables

LOBs in Index Organized Tables

ORACLE

Index Organized Tables (IOTs) support internal and external LOB columns. For the
most part, SQL DDL, DML, and piece wise operations on LOBs in I0Ts produce the
same results as those for normal tables. The only exception is the default semantics of
LOBs during creation. The main differences are:

» Tablespace Mapping: By default, or unless specified otherwise, the LOB data
and index segments are created in the tablespace in which the primary key index
segments of the index organized table are created.

* Inline as Compared to Out-of-Line Storage: By default, all LOBs in an index
organized table created without an overflow segment are stored out of line. In
other words, if an index organized table is created without an overflow segment,
then the LOBs in this table have their default storage attributes as DI SABLE
STORAGE | N ROW If you forcibly try to specify an ENABLE STORAGE | N ROWclause for
such LOBs, then SQL raises an error.

On the other hand, if an overflow segment has been specified, then LOBs in index
organized tables exactly mimic their semantics in conventional tables.

¢ See Also:

Defining Tablespace and Storage Characteristics for Persistent LOBs

Example of Index Organized Table (IOT) with LOB Columns
Consider the following example:

CREATE TABLE iotlob_tab (cl INTEGER PRI MARY KEY, c¢2 BLOB, c¢3 CLOB, c4
VARCHAR2(20))
ORGANI ZATI ON | NDEX
TABLESPACE iot _ts
PCTFREE 10 PCTUSED 10 | NI TRANS 1 MAXTRANS 1 STORAGE (I NITIAL 4K)
PCTTHRESHOLD 50 | NCLUDI NG c2
OVERFLOW
TABLESPACE ioto_ts
PCTFREE 10 PCTUSED 10 | NI TRANS 1 MAXTRANS 1 STORAGE (INITIAL 8K) LOB (c2)
STORE AS | obseg (TABLESPACE | ob_ts DI SABLE STORAGE IN ROW
CHUNK 16384 PCTVERSI ON 10 CACHE STORAGE (I NITIAL 2M
| NDEX | obi dx_c1 (TABLESPACE | obidx_ts STORAGE (INTIAL 4K)));

Executing these statements results in the creation of an index organized table
i ot | ob_t ab with the following elements:

* A primary key index segment in the tablespaceiot _ts,
e Anoverflow data segment in tablespaceioto_ts

e Columns starting from column C3 being explicitly stored in the overflow data
segment

e BLOB (column C2) data segments in the tablespace | ob_t s

e BLOB (column C2) index segments in the tablespace | obi dx_ts

13-21

Chapter 13
Restrictions for LOBs in Partitioned Index-Organized Tables

CLOB (column C3) data segments in the tablespaceiot ts
CLOB (column C3) index segments in the tablespaceiot ts
CLOB (column C3) stored in line by virtue of the IOT having an overflow segment

BLOB (column C2) explicitly forced to be stored out of line

" Note:

If no overflow had been specified, then both C2 and C3 would have been
stored out of line by default.

Other LOB features, such as BFI LEs and varying character width LOBSs, are also
supported in index organized tables, and their usage is the same as for conventional
tables.

Restrictions for LOBs in Partitioned Index-Organized Tables

LOB columns are supported in range-, list-, and hash-partitioned index-organized
tables with the following restrictions:

Composite partitioned index-organized tables are not supported.

Relational and object partitioned index-organized tables (partitioned by range,
hash, or list) can hold LOBs stored as follows; however, partition maintenance
operations, such as MOVE, SPLI T, and MERGE are not supported with:

— VARRAY data types stored as LOB data types
— Abstract data types with LOB attributes
— Nested tables with LOB types

¢ See Also:

Additional restrictions for LOB columns in general are given in "LOB
Rules and Restrictions".

Updating LOBs in Nested Tables

To update LOBs in a nested table, you must lock the row containing the LOB explicitly.
To do so, you must specify the FOR UPDATE clause in the subquery prior to updating
the LOB value.

Note that locking the row of a parent table does not lock the row of a nested table
containing LOB columns.

ORACLE

13-22

Chapter 13
Updating LOBs in Nested Tables

¢ Note:

Nested tables containing LOB columns are the only data structures
supported for creating collections of LOBs. You cannot create a VARRAY of

any LOB data type.

ORACLE 13-23

Advanced Design Considerations

There are design considerations for more advanced application development issues.
Topicss:

* Opening Persistent LOBs with the OPEN and CLOSE Interfaces

* Read-Consistent Locators

* LOB Locators and Transaction Boundaries

e LOBs in the Object Cache

e Terabyte-Size LOB Support

e Guidelines for Creating Gigabyte LOBs

Opening Persistent LOBs with the OPEN and CLOSE

Interfaces

The OPEN and CLOSE interfaces enable you to explicitly open a persistent LOB
instance.

When you open a LOB instance with the OPEN interface, the instance remains open
until you explicitly close the LOB using the CLOSE interface. The | SOPEN interface
enables you to determine whether a persistent LOB is open.

Note that the open state of a LOB is associated with the LOB instance, not the LOB
locator. The locator does not save any information indicating whether the LOB
instance that it points to is open.

¢ See Also:
"LOB Open and Close Operations0.".

Topics:
e Index Performance Benefits of Explicitly Opening a LOB

e Closing Explicitly Open LOB Instances

Index Performance Benefits of Explicitly Opening a LOB

ORACLE

Explicitly opening a LOB instance can benefit performance of a persistent LOB in an
indexed column.

If you do not explicitly open the LOB instance, then every modification to the LOB
implicitly opens and closes the LOB instance. Any triggers on a domain index are fired

14-1

Chapter 14
Read-Consistent Locators

each time the LOB is closed. Note that in this case, any domain indexes on the LOB
are updated as soon as any modification to the LOB instance is made; the domain
index is always valid and can be used at any time.

When you explicitly open a LOB instance, index triggers do not fire until you explicitly
close the LOB. Using this technique can increase performance on index columns by
eliminating unneeded indexing events until you explicitly close the LOB. Note that any
index on the LOB column is not valid until you explicitly close the LOB.

Closing Explicitly Open LOB Instances

If you explicitly open a LOB instance, then you must close the LOB before you commit
the transaction.

Committing a transaction on the open LOB instance causes an error. When this error
occurs, the LOB instance is closed implicitly, any modifications to the LOB instance
are saved, and the transaction is committed, but any indexes on the LOB column are
not updated. In this situation, you must rebuild your indexes on the LOB column.

If you subsequently rollback the transaction, then the LOB instance is rolled back to its
previous state, but the LOB instance is no longer explicitly open.

You must close any LOB instance that you explicitly open:

- Between DML statements that start a transaction, including SELECT ... FOR UPDATE
and COWM T

* Within an autonomous transaction block
« Before the end of a session (when there is no transaction involved)

If you do not explicitly close the LOB instance, then it is implicitly closed at the end
of the session and no index triggers are fired.

Keep track of the open or closed state of LOBs that you explicitly open. The following
actions cause an error:

» Explicitly opening a LOB instance that has been explicitly open earlier.
» Explicitly closing a LOB instance that is has been explicitly closed earlier.

This occurs whether you access the LOB instance using the same locator or different
locators.

Read-Consistent Locators

Oracle Database provides the same read consistency mechanisms for LOBs as for all
other database reads and updates of scalar quantities.

Read consistency has some special applications to LOB locators that you must
understand. The following sections discuss read consistency and include examples
which should be looked at in relationship to each other.

ORACLE 14-2

Chapter 14
Read-Consistent Locators

¢ See Also:

e Oracle Database Concepts for general information about read
consistency

e Table for LOB Examples: The PM Schema print_media Table

Topics:

¢ A Selected Locator Becomes a Read-Consistent Locator

e Example of Updating LOBs and Read-Consistency

e Example of Updating LOBs Through Updated Locators

e Example of Updating a LOB Using SQL DML and DBMS_LOB

e Example of Using One Locator to Update the Same LOB Value

e Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable

A Selected Locator Becomes a Read-Consistent Locator

A selected locator, regardless of the existence of the FOR UPDATE clause, becomes a
read-consistent locator, and remains a read-consistent locator until the LOB value is
updated through that locator.

A read-consistent locator contains the snapshot environment as of the point in time of
the SELECT operation.

This has some complex implications. Suppose you have created a read-consistent
locator (L1) by way of a SELECT operation. In reading the value of the persistent LOB
through L1, note the following:

* The LOB is read as of the point in time of the SELECT statement even if the SELECT
statement includes a FOR UPDATE.

» If the LOB value is updated through a different locator (L2) in the same
transaction, then L1 does not see the L2 updates.

* L1 does not see committed updates made to the LOB through another transaction.

» If the read-consistent locator L1 is copied to another locator L2 (for example, by a
PL/SQL assignment of two locator variables — L2: = L1), then L2 becomes a read-
consistent locator along with L1 and any data read is read as of the point in time of
the SELECT for L1.

You can use the existence of multiple locators to access different transformations of
the LOB value. However, in doing so, you must keep track of the different values
accessed by different locators.

Example of Updating LOBs and Read-Consistency

ORACLE

Read-consistent locators provide the same LOB value regardless of when the SELECT
occurs.

The following example demonstrates the relationship between read-consistency and
updating in a simple example. Using the pri nt _nedi a table described in "Table for

14-3

Chapter 14
Read-Consistent Locators

LOB Examples: The PM Schema print_media Table" and PL/SQL, three CLOB
instances are created as potential locators: cl ob_sel ect ed, cl ob_updat e, and
cl ob_copi ed.

Observe these progressions in the code, from times t 1 through t 6:

* At the time of the first SELECT | NTO(at t 1), the value in ad_sour cet ext is
associated with the locator cl ob_sel ect ed.

* Inthe second operation (at t 2), the value in ad_sour cet ext is associated with the
locator cl ob_updat ed. Because there has been no change in the value of
ad_sourcetext betweent1 andt 2, both cl ob_sel ect ed and cl ob_updat ed are
read-consistent locators that effectively have the same value even though they
reflect snapshots taken at different moments in time.

* The third operation (at t 3) copies the value in cl ob_sel ect ed to cl ob_copi ed. At
this juncture, all three locators see the same value. The example demonstrates
this with a series of DBM5S_LOB.READ() calls.

e Attimet4, the program uses DBVM5S_LOB.WRI TE() to alter the value in cl ob_updat ed,
and a DBVS_LOB.READ() reveals a new value.

* However, a DBM5S_LOB.READ() of the value through cl ob_sel ect ed (at t 5) reveals
that it is a read-consistent locator, continuing to refer to the same value as of the
time of its SELECT.

e Likewise, a DBM5_LOB.READ() of the value through cl ob_copi ed (at t 6) reveals that
it is a read-consistent locator, continuing to refer to the same value as
cl ob_sel ect ed.

Example 14-1

I NSERT | NTO PRI NT_MEDI A VALUES (2056, 20020, EMPTY_BLOB(),
"abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

COWM T,
DECLARE
num var | NTEGER,
cl ob_sel ected CLCB;
cl ob_updat ed CLCB;
cl ob_copi ed CLCB;
read_anmount | NTEGER;
read_of f set | NTEGER;
write_amount | NTEGER;
write_offset | NTEGER;
buf fer VARCHAR2(20) ;
BEG N
- At time tl:

SELECT ad_sourcetext |NTO cl ob_sel ected
FROM Print _nedi a
WHERE ad_id = 20020;

- At time t2:

SELECT ad_sourcetext | NTO cl ob_updat ed
FROM Print _nedi a
WHERE ad_id = 20020
FOR UPDATE;

- At time t3:

ORACLE 14-4

Chapter 14
Read-Consistent Locators

clob_copied : = clob_sel ected;

-- After the assignnent, both the clob_copied and the

-- clob_sel ected have the sane snapshot as of the point in tine
- of the SELECT into clob_selected

- Reading fromthe clob_sel ected and the clob_copi ed does

- return the same LOB val ue. clob_updated al so sees the sane
-- LOB value as of its select:
read_amount := 10;
read_offset := 1;
dbns_| ob. read(cl ob_sel ected, read_anount, read_offset, buffer);
dbns_out put. put _line('clob_selected value: " || buffer);

- Produces the output 'abcd'

read_amount := 10;

dbns_| ob. read(cl ob_copi ed, read_anmount, read_offset, buffer);
dbns_out put. put _l'ine('clob_copied value: ' || buffer);

- Produces the output 'abcd'

read_amount := 10;

dbns_| ob. read(cl ob_updated, read_amount, read_offset, buffer);
dbns_out put. put _line('clob_updated value: ' || buffer);

- Produces the output 'abcd'

- A tine t4:
wite_amount :
wite_offset :
buffer :="efg";

dbns_| ob. write(clob_updated, wite_anmount, wite_offset, buffer);

3;
5,

read_amount := 10;

dbns_| ob. read(cl ob_updated, read_amount, read_offset, buffer);
dbns_out put. put _line('clob_updated value: ' || buffer);

- Produces the output 'abcdefg'

- At tine t5:
read_amount := 10;
dbns_| ob. read(cl ob_sel ected, read_anount, read_offset, buffer);
dbns_out put. put _line('clob_selected value: ' || buffer);

- Produces the output 'abcd'

- At tine t6:
read_amount := 10;
dbns_| ob. read(cl ob_copi ed, read_anmount, read_offset, buffer);
dbns_out put. put _l'ine('clob_copied value: ' || buffer);

- Produces the output 'abcd'

END;

Example of Updating LOBs Through Updated Locators

ORACLE

When you update the value of the persistent LOB through the LOB locator (L1), L1 is
updated to contain the current snapshot environment.

This snapshot is as of the time after the operation was completed on the LOB value
through locator L1. L1 is then termed an updated locator. This operation enables you
to see your own changes to the LOB value on the next read through the same locator,
L1.

14-5

Chapter 14
Read-Consistent Locators

< Note:

The snapshot environment in the locator is not updated if the locator is used
to merely read the LOB value. It is only updated when you modify the LOB
value through the locator using the PL/SQL DBMS_LOB package or the OCI
LOB APIs.

Any committed updates made by a different transaction are seen by L1 only if your
transaction is a read-committed transaction and if you use L1 to update the LOB value
after the other transaction committed.

" Note:

When you update a persistent LOB value, the modification is always made to
the most current LOB value.

Updating the value of the persistent LOB through any of the available methods, such
as OCI LOB APIs or PL/SQL DBVS_LOB package, updates the LOB value and then
reselects the locator that refers to the new LOB value.

< Note:

Once you have selected out a LOB locator by whatever means, you can read
from the locator but not write into it.

Note that updating the LOB value through SQL is merely an UPDATE
statement. It is up to you to do the reselect of the LOB locator or use the
RETURNI NG clause in the UPDATE statement so that the locator can see the
changes made by the UPDATE statement. Unless you reselect the LOB locator
or use the RETURNI NG clause, you may think you are reading the latest value
when this is not the case. For this reason you should avoid mixing SQL DML
with OCI and DBM5S_L OB piecewise operations.

See Also:

Oracle Database PL/SQL Language Reference

Example of Updating a LOB Using SQL DML and DBMS LOB

Using the Print _medi a table in the following example, a CLOB locator is created as
cl ob_sel ect ed. Note the following progressions in the example, from times t 1 through
t3:

e Atthe time of the first SELECT | NTO (at t 1), the value in ad_sour cet ext is
associated with the locator cl ob_sel ect ed.

ORACLE 14-6

ORACLE

Chapter 14

Read-Consistent Locators

In the second operation (at t 2), the value in ad_sour cet ext is modified through the
SQL UPDATE statement, without affecting the cl ob_sel ect ed locator. The locator still
sees the value of the LOB as of the point in time of the original SELECT. In other

words, the locator does not see the update made using the SQL UPDATE
statement. This is illustrated by the subsequent DBMS_LOB.READ() call.

The third operation (at t 3) re-selects the LOB value into the locator

cl ob_sel ect ed. The locator is thus updated with the latest snapshot environment

which allows the locator to see the change made by the previous SQL UPDATE

statement. Therefore, in the next DBMS_LOB.READ() , an error is returned because

the LOB value is empty, that is, it does not contain any data.

I NSERT I NTO Print_nedia VALUES (3247, 20010, EMPTY_BLOB(),

"abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

COWM T,
DECLARE
num var | NTEGER,
clob_sel ected CLOB;
read_anmount | NTEGER;
read_of f set | NTEGER;
buf fer VARCHAR2(20) ;
BEG N
- At time tl:

SELECT ad_sourcetext INTO cl ob_sel ected
FROM Print_nedi a
VHERE ad_id = 20010;

read_anmount := 10;

read offset := 1;

dbns_| ob. read(cl ob_sel ected, read_anount, read offset, buffer);
dbns_out put . put _l'ine(' clob_sel ected value: ' || buffer);

- Produces the output 'abcd'

- At tine t2:
UPDATE Print_nedia SET ad_sourcetext = enpty_clob()
VHERE ad_id = 20010;
- although the nost current LOB value is now enpty,
- clob_selected still sees the LOB value as of the point
- in time of the SELECT

read_anmount := 10;

dbns_| ob. read(cl ob_sel ected, read_anount, read offset, buffer);
dbns_out put . put _l'ine(' clob_sel ected value: ' || buffer);

- Produces the output 'abcd'

- At tine t3:
SELECT ad_sourcetext INTO cl ob_sel ected FROM Print_medi a WHERE
ad_id = 20010;
- the SELECT allows clob_selected to see the nost current
- LOB val ue

read_anmount := 10;
dbns_| ob. read(cl ob_sel ected, read_anount, read offset, buffer);
- ERROR ORA-01403: no data found

END;

/

14-7

Chapter 14
Read-Consistent Locators

Example of Using One Locator to Update the Same LOB Value

ORACLE

< Note:

Avoid updating the same LOB with different locators. You may avoid many
pitfalls if you use only one locator to update a given LOB value.

In the following example, using table Pri nt _medi a, two CLOBs are created as potential
locators: clob_updated and clob_copied.

Note these progressions in the example at times t1 through t5:

* At the time of the first SELECT | NTO(at t 1), the value in ad_sour cet ext is
associated with the locator ¢l ob_updat ed.

* The second operation (at time t 2) copies the value in cl ob_updat ed to
cl ob_copi ed. At this time, both locators see the same value. The example
demonstrates this with a series of DBM5S_LOB.READ() calls.

e Attimet 3, the program uses DBVM5S_LOB.WRI TE() to alter the value in cl ob_updat ed,
and a DBV5S_LOB. READ() reveals a new value.

* However, a DBM5_LOB.READ() of the value through cl ob_copi ed (at time t 4)
reveals that it still sees the value of the LOB as of the point in time of the
assignment from cl ob_updat ed (at t 2).

* Itis not until cl ob_updat ed is assigned to cl ob_copi ed (t 5) that cl ob_copi ed sees
the modification made by cl ob_updat ed.

I NSERT | NTO PRI NT_MEDI A VALUES (2049, 20030, EMPTY BLOB(),
"abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

COWM T,

DECLARE
num var | NTEGER;
cl ob_updat ed CLCB;
cl ob_copi ed CLCB;
read_amount | NTEGER,
read_of f set | NTEGER,
write amount | NTEGER,
write of fset | NTEGER;
buf f er VARCHAR2(20) ;

BEG N

- At time tl:

SELECT ad_sourcetext INTO cl ob_updated FROM PRI NT_MEDI A
WHERE ad_id = 20030
FOR UPDATE;

- A tinme t2:

cl ob_copi ed : = cl ob_updat ed;
- after the assign, clob_copied and cl ob_updated see the same
- LOB val ue

read_amount := 10;

14-8

Chapter 14
Read-Consistent Locators

read_offset := 1;

dbns_| ob. read(cl ob_updated, read_amount, read_offset, buffer);
dbns_out put. put _line('clob_updated value: ' || buffer);

- Produces the output 'abcd'

read_amount := 10;

dbns_| ob. read(cl ob_copi ed, read_anount, read_offset, buffer);
dbns_out put. put _l'ine('clob_copied value: ' || buffer);

- Produces the output 'abcd'

- At tine t3:

write_amount :

wite_offset :

buffer :="efg";

dbns_| ob. write(clob_updated, wite_amount, wite_offset,
buffer);

3
5;

read_amount := 10;

dbns_| ob. read(cl ob_updated, read_amount, read_offset, buffer);
dbns_out put. put _line('clob_updated value: ' || buffer);

- Produces the output 'abcdefg'

- At tine t4:
read_amount := 10;
dbns_| ob. read(cl ob_copi ed, read_anmount, read_offset, buffer);
dbns_out put. put _l'ine('clob_copied value: ' || buffer);

- Produces the output 'abcd'

- At tine t5:
clob_copied : = cl ob_updat ed;

read_amount := 10;
dbns_| ob. read(cl ob_copi ed, read_anmount, read_offset, buffer);
dbns_out put. put _l'ine('clob_copied value: ' || buffer);
- Produces the output 'abcdefg'
END;
/

Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind

Variable

ORACLE

When a LOB locator is used as the source to update another persistent LOB (as in a
SQL | NSERT or UPDATE statement, the DBMS_LOB.COPY routine, and so on), the snapshot
environment in the source LOB locator determines the LOB value that is used as the
source.

If the source locator (for example L1) is a read-consistent locator, then the LOB value
as of the time of the SELECT of L1 is used. If the source locator (for example L2) is an
updated locator, then the LOB value associated with the L2 snapshot environment at
the time of the operation is used.

In the following example, three CLOBs are created as potential locators:
cl ob_sel ect ed, clob_updated, and clob_copied.

Note these progressions in the example at times t 1 through t 5:

e Atthe time of the first SELECT | NTO(at t 1), the value in ad_sour cet ext is
associated with the locator cl ob_updat ed.

14-9

Chapter 14
Read-Consistent Locators

* The second operation (at t 2) copies the value in cl ob_updat ed to cl ob_copi ed. At
this juncture, both locators see the same value.

e Then (att 3), the program uses DBMS_LOB.WRI TE() to alter the value in
cl ob_updat ed, and a DBV5_LOB.READ() reveals a new value.

* However, a DBM5S_LOB.READ() of the value through cl ob_copi ed (at t 4) reveals that
cl ob_copi ed does not see the change made by cl ob_updat ed.

* Therefore (at t 5), when cl ob_copi ed is used as the source for the value of the
| NSERT statement, the value associated with cl ob_copi ed (for example, without
the new changes made by cl ob_updat ed) is inserted. This is demonstrated by the
subsequent DBMS_LOB.READ() of the value just inserted.

I NSERT | NTO PRINT_MEDI A VALUES (2056, 20020, EMPTY_BLOB(),
"abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

COWM T,
DECLARE
num var | NTEGER,
clob_sel ected CLOB;
cl ob_updat ed CLOB;
cl ob_copi ed CLOB;
read_anount | NTEGER;
read_of f set | NTEGER;
write_amount | NTEGER;
wite of fset | NTEGER;
buf fer VARCHAR2(20) ;
BEG N
- At time t1:

SELECT ad_sourcetext |NTO cl ob_updated FROM PRI NT_MEDI A
WHERE ad_id = 20020
FOR UPDATE;

read_anmount := 10;

read offset := 1;

dbns_| ob. read(cl ob_updated, read_amount, read_of fset, buffer);
dbms_out put . put _I'i ne(" cl ob_updated value: ' || buffer);

- Produces the output 'abcd'

- A time t2:
cl ob_copi ed : = cl ob_updat ed;

- At time t3:
wite_amount := 3;
wite offset := 5;
buffer :="efg";

dbns_l ob. write(clob_updated, wite_amount, wite_offset, buffer);

read_anmount := 10;

dbns_| ob. read(cl ob_updated, read_amount, read_of fset, buffer);
dbns_out put . put _I'i ne(" cl ob_updated value: ' || buffer);

- Produces the output 'abcdefg'

- note that clob_copied does not see the wite made before

- cl ob_updat ed

- A time t4:

ORACLE 14-10

Chapter 14
LOB Locators and Transaction Boundaries

read_amount := 10;

dbns_| ob. read(cl ob_copi ed, read_anmount, read_offset, buffer);
dbns_out put. put _l'ine('clob_copied value: ' || buffer);

- Produces the output 'abcd'

- At tine t5:

- the insert uses clob_copied view of the LOB val ue which does

- not include clob_updated changes

I NSERT | NTO PRI NT_MEDI A VALUES (2056, 20022, EMPTY_BLOB(),
clob_copied, EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL)
RETURNI NG ad_sourcetext INTO cl ob_sel ect ed;

read_amount := 10;
dbns_| ob. read(cl ob_sel ected, read_anount, read_offset, buffer);
dbns_out put. put _line('clob_selected value: " || buffer);
- Produces the output 'abcd'
END;
/

LOB Locators and Transaction Boundaries

LOB locators can be used in transactions and transaction IDs.

¢ See Also:

LOB Locators and BFILE Locators for more information about LOB locators

Topics:

* About LOB Locators and Transaction Boundaries

* Read and Write Operations on a LOB Using Locators

* Selecting the Locator Outside of the Transaction Boundary
» Selecting the Locator Within a Transaction Boundary

e LOB Locators Cannot Span Transactions

» Example of Locator Not Spanning a Transaction

About LOB Locators and Transaction Boundaries

ORACLE

Note the following regarding LOB locators and transactions:

» Locators contain transaction IDs when:

You Begin the Transaction, Then Select Locator: If you begin a transaction and
subsequently select a locator, then the locator contains the transaction ID. Note
that you can implicitly be in a transaction without explicitly beginning one. For
example, SELECT... FOR UPDATE implicitly begins a transaction. In such a case, the
locator contains a transaction ID.

» Locators Do Not Contain Transaction IDs When...

— You are Outside the Transaction, Then Select Locator: By contrast, if you
select a locator outside of a transaction, then the locator does not contain a
transaction ID.

14-11

Chapter 14
LOB Locators and Transaction Boundaries

— When Selected Prior to DML Statement Execution: A transaction ID is not
assigned until the first DML statement executes. Therefore, locators that are
selected prior to such a DML statement do not contain a transaction ID.

Read and Write Operations on a LOB Using Locators

You can always read LOB data using the locator irrespective of whether or not the
locator contains a transaction ID.

Cannot Write Using Locator:

If the locator contains a transaction ID, then you cannot write to the LOB outside of
that particular transaction.

Can Write Using Locator:

If the locator does not contain a transaction 1D, then you can write to the LOB after
beginning a transaction either explicitly or implicitly.

Cannot Read or Write Using Locator With Serializable Transactions:

If the locator contains a transaction ID of an older transaction, and the current
transaction is serializable, then you cannot read or write using that locator.

Can Read, Not Write Using Locator With Non-Serializable Transactions:

If the transaction is non-serializable, then you can read, but not write outside of
that transaction.

The examples Selecting the Locator Outside of the Transaction Boundary, Selecting
the Locator Within a Transaction Boundary, LOB Locators Cannot Span Transactions,
and Example of Locator Not Spanning a Transaction show the relationship between
locators and non-serializable transactions

Selecting the Locator Outside of the Transaction Boundary

ORACLE

Two scenarios describe techniques for using locators in non-serializable transactions
when the locator is selected outside of a transaction.

First Scenario:

1.

N o g & w0 D

Select the locator with no current transaction. At this point, the locator does not
contain a transaction id.

Begin the transaction.

Use the locator to read data from the LOB.

Commit or rollback the transaction.

Use the locator to read data from the LOB.

Begin a transaction. The locator does not contain a transaction id.

Use the locator to write data to the LOB. This operation is valid because the
locator did not contain a transaction id prior to the write. After this call, the locator
contains a transaction id.

Second Scenario:

1.

Select the locator with no current transaction. At this point, the locator does not
contain a transaction id.

14-12

Chapter 14
LOB Locators and Transaction Boundaries

Begin the transaction. The locator does not contain a transaction id.

Use the locator to read data from the LOB. The locator does not contain a
transaction id.

Use the locator to write data to the LOB. This operation is valid because the
locator did not contain a transaction id prior to the write. After this call, the locator
contains a transaction id. You can continue to read from or write to the LOB.

Commit or rollback the transaction. The locator continues to contain the
transaction id.

Use the locator to read data from the LOB. This is a valid operation.
Begin a transaction. The locator contains the previous transaction id.

Use the locator to write data to the LOB. This write operation fails because the
locator does not contain the transaction id that matches the current transaction.

Selecting the Locator Within a Transaction Boundary

Two scenarios describe techniques for using locators in non-serializable transactions
when the locator is selected within a transaction.

ORACLE

First Scenario:

1.

Select the locator within a transaction. At this point, the locator contains the
transaction id.

Begin the transaction. The locator contains the previous transaction id.

Use the locator to read data from the LOB. This operation is valid even though the
transaction id in the locator does not match the current transaction.

See Also:

"Read-Consistent Locators" for more information about using the locator
to read LOB data.

Use the locator to write data to the LOB. This operation fails because the
transaction id in the locator does not match the current transaction.

Second Scenario:

Begin a transaction.

Select the locator. The locator contains the transaction id because it was selected
within a transaction.

Use the locator to read from or write to the LOB. These operations are valid.

Commit or rollback the transaction. The locator continues to contain the
transaction id.

Use the locator to read data from the LOB. This operation is valid even though
there is a transaction id in the locator and the transaction was previously
committed or rolled back.

14-13

Chapter 14
LOB Locators and Transaction Boundaries

6. Use the locator to write data to the LOB. This operation fails because the
transaction id in the locator is for a transaction that was previously committed or
rolled back.

LOB Locators Cannot Span Transactions

Modifying a persistent LOB value through the LOB locator using DBM5_LOB, OCI, or
SQL | NSERT or UPDATE statements changes the locator from a read-consistent locator
to an updated locator.

The | NSERT or UPDATE statement automatically starts a transaction and locks the row.
Once this has occurred, the locator cannot be used outside the current transaction to
modify the LOB value. In other words, LOB locators that are used to write data cannot
span transactions. However, the locator can be used to read the LOB value unless you
are in a serializable transaction.

See Also:

"LOB Locators and Transaction Boundaries ", for more information about the
relationship between LOBs and transaction boundaries.

In Example of Locator Not Spanning a Transaction , a CLOB locator is created:
cl ob_updat ed

e At the time of the first SELECT | NTO (at t1), the value in ad_sour cet ext is
associated with the locator cl ob_updat ed.

* The second operation (at t2), uses the DBM5S_LOB.WRI TE function to alter the value
in ¢l ob_updat ed, and a DBVS_LOB.READ reveals a new value.

« The commit statement (at t3) ends the current transaction.

e Therefore (at t4), the subsequent DBM5_LOB.V\RI TE operation fails because the
cl ob_updat ed locator refers to a different (already committed) transaction. This is
noted by the error returned. You must re-select the LOB locator before using it in
further DBMS_LOB (and OCI) modify operations.

Example of Locator Not Spanning a Transaction

ORACLE

The example uses the print _nmedi a table described in "Table for LOB Examples: The
PM Schema print_media Table"

I NSERT | NTO PRINT_MEDI A VALUES (2056, 20010, EMPTY_BLOB(),
"abcd', EMPTY_CLOB(), EMPTY_CLOB(), NULL, NULL, NULL, NULL);

COWM T,

DECLARE
num var | NTEGER,
cl ob_updat ed CLOB;
read_anount | NTEGER;
read_of f set | NTEGER;
write_amount | NTEGER;
wite offset | NTEGER;
buf fer VARCHAR2(20) ;

14-14

Chapter 14
LOBs in the Object Cache

BEG N
- At tine tl:

SELECT ad_sour cet ext
I NTO cl ob_updat ed
FROM PRI NT_NMEDI A
WHERE ad_id = 20010
FOR UPDATE;
read_anount := 10;

read_offset := 1;

dbns_| ob. read(cl ob_updated, read_anmount, read_offset, buffer);
dbns_out put. put _I'ine('clob_updated value: ' || buffer);

- This produces the output 'abcd'

- At time t2:
write_amount := 3;
wite offset := 5;
buffer := "efg";

dbns_l ob. write(clob_updated, wite_amount, wite_offset, buffer);
read_anmount := 10;

dbns_| ob. read(cl ob_updated, read_anmount, read_offset, buffer);
dbns_out put. put _I'ine(' clob_updated value: ' || buffer);

- This produces the output 'abcdefg'

- At time t3:
COW T;
- A tinme t4:

dbns_l ob. write(clob_updated , wite_amount, wite_offset, buffer);
- ERROR ORA-22990: LOB locators cannot span transactions

END;

/

LOBs in the Object Cache

ORACLE

When you copy one object to another in the object cache with a LOB locator attribute,
only the LOB locator is copied.

This means that the LOB attribute in these two different objects contain exactly the
same locator which refers to one and the same LOB value. Only when the target
object is flushed is a separate, physical copy of the LOB value made, which is distinct
from the source LOB value.

¢ See Also:

"Example of Updating LOBs and Read-Consistency" for a description of what
version of the LOB value is seen by each object if a write is performed
through one of the locators.

Therefore, in cases where you want to modify the LOB that was the target of the copy,
you must flush the target object, refresh the target object, and then write to the
LOB through the locator attribute.

Consider these object cache issues for internal and external LOB attributes:

14-15

Chapter 14
Terabyte-Size LOB Support

» Persistent LOB attributes: Creating an object in object cache, sets the LOB
attribute to empty.

When you create an object in the object cache that contains a persistent LOB
attribute, the LOB attribute is implicitly set to empty. You may not use this empty
LOB locator to write data to the LOB. You must first flush the object, thereby
inserting a row into the table and creating an empty LOB — that is, a LOB with O
length. Once the object is refreshed in the object cache (use OCl _PI N_LATEST), the
real LOB locator is read into the attribute, and you can then call the OCI LOB API
to write data to the LOB.

e External LOB (BFI LE) attributes: Creating an object in object cache, sets the BFI LE
attribute to NULL.

When creating an object with an external LOB (BFI LE) attribute, the BFI LE is set to
NULL. It must be updated with a valid directory object name and file name before
reading from the BFI LE.

Terabyte-Size LOB Support

Terabyte-size LOBs are LOBs that are up to a maximum size of 8 to 128 terabytes
depending on database block size.

Topics:

e About Terabyte-Size LOB Support

* Maximum Storage Limit for Terabyte-Size LOBs

» Using Terabyte-Size LOBs with JDBC

* Using Terabyte-Size LOBs with the DBMS_|L OB Package
» Using Terabyte-Size LOBs with OCI

About Terabyte-Size LOB Support

ORACLE

Terabyte-size LOBs are supported by the following APIs:
e Java using JDBC (Java Database Connectivity)

e PL/SQL using the DBMS_LOB Package

e Cusing OCI (Oracle Call Interface)

You cannot create and use LOB instances of size greater than 4 gigabytes "terabyte-
size LOBs"— in the following programmatic environments:

e COBOL using the Pro*COBOL Precompiler

e C or C++ using the Pro*C/C++ Precompiler

¢ Note:

Oracle Database does not support BFI LEs larger than 2°64-1 bytes
(UBSMAXVAL in OCI) in any programmatic environment. Any additional file size
limit imposed by your operating system also applies to BFI LEs.

14-16

Chapter 14
Terabyte-Size LOB Support

Maximum Storage Limit for Terabyte-Size LOBs

In supported environments, you can create and manipulate LOBs that are up to the
maximum storage size limit for your database configuration.

Oracle Database lets you create tablespaces with block sizes different from the
database block size, and the maximum size of a LOB depends on the size of the
tablespace blocks. CHUNK is a parameter of LOB storage whose value is controlled by
the block size of the tablespace in which the LOB is stored.

¢ Note:

The CHUNK parameter does not apply to SecureFiles. It is only used for
BasicFiles LOBs.

When you create a LOB column, you can specify a value for CHUNK, which is the
number of bytes to be allocated for LOB manipulation. The value must be a multiple of
the tablespace block size, or Oracle Database rounds up to the next multiple. (If the
tablespace block size is the same as the database block size, then CHUNK is also a
multiple of the database block size.)

The maximum allowable storage limit for your configuration depends on the
tablespace block size setting, and is calculated as (4 gigabytes - 1) times the value
obtained from DBMS_LOB. GETCHUNKSI ZE or OCl LobGet ChunkSi ze() . This value, in
number of bytes for BLOBs or number of characters for CLOBs, is actually less than the
size of the CHUNK parameter due to internal storage overhead. With the current
allowable range for the tablespace block size from 2K to 32K, the storage limit ranges
from 8 terabytes to 128 terabytes.

For example, suppose your database block size is 32K bytes and you create a
tablespace with a nonstandard block size of 8K. Further suppose that you create a
table with a LOB column and specify a CHUNK size of 16K (which is a multiple of the
8K tablespace block size). Then the maximum size of a LOB in this column is (4
gigabytes - 1) * 16K.

See Also:

e Oracle Database Administrator's Guide for details on the initialization
parameter setting for your database installation

e "CHUNK"

This storage limit applies to all LOB types in environments that support terabyte-size
LOBs. However, note that CLOB and NCLOB types are sized in characters, while the
BLOB type is sized in bytes.

ORACLE 14-17

Chapter 14
Terabyte-Size LOB Support

Using Terabyte-Size LOBs with JDBC

You can use the LOB APIs included in the Oracle JDBC classes to access terabyte-
size LOBs.

¢ See Also:

"Using Java (JDBC) to Work With LOBs"

Using Terabyte-Size LOBs with the DBMS_LOB Package

You can access terabyte-size LOBs with all APIs in the DBMS_LOB PL/SQL package.

Use DBM5S_LOB. GETCHUNKSI ZE to obtain the value to be used in reading and writing
LOBs. The number of bytes stored in a chunk is actually less than the size of the
CHUNK parameter due to internal storage overhead. The DBMS_LOB. GET_STORAGE LIM T
function returns the storage limit for your database configuration. This is the maximum
allowable size for LOBs. BLOBs are sized in bytes, while CLOBs and NCLOBs are sized in
characters.

¢ See Also:

Oracle Database PL/SQL Packages and Types Referencefor details on the
initialization parameter setting for your database installation.

Using Terabyte-Size LOBs with OCI

The Oracle Call Interface API provides a set of functions for operations on LOBs of all
sizes.

OCl LobCet ChunkSi ze() returns the value, in bytes for BLOBs, or in characters for CLOBs,
to be used in reading and writing LOBs. For varying-width character sets, the value is
the number of Unicode characters that fit. The number of bytes stored in a chunk is
actually less than the size of the CHUNK parameter due to internal storage overhead.
The function OCl LobGet St or ageLi mi t () returns the maximum allowable size, in bytes,
of internal LOBs in the current database installation. If streaming mode is used, where
the whole LOB is read, there is no requirement to get the chunk size.

See Also:

Oracle Call Interface Programmer's Guide for details about OCI functions
that support LOBs

ORACLE 14-18

Chapter 14
Guidelines for Creating Gigabyte LOBs

Guidelines for Creating Gigabyte LOBs

To create gigabyte LOBs in supported environments, use the following guidelines to
make use of all available space in the tablespace for LOB storage:

Single Data File Size Restrictions:

There are restrictions on the size of a single data file for each operating system.
For example, Solaris 2.5 only allows operating system files of up to 2 gigabytes.
Hence, add more data files to the tablespace when the LOB grows larger than the
maximum allowed file size of the operating system on which your Oracle Database
runs.

Set PCT INCREASE Parameter to Zero:

PCTI NCREASE parameter in the LOB storage clause specifies the percent growth of
the new extent size. When a LOB is being filled up piece by piece in a tablespace,
numerous new extents get created in the process. If the extent sizes keep
increasing by the default value of 50 percent every time, then extents become
unmanageable and eventually waste space in the tablespace. Therefore, the

PCTI NCREASE parameter should be set to zero or a small value.

Set MAXEXTENTS to a Suitable Value or UNLIMITED:

The MAXEXTENTS parameter limits the number of extents allowed for the LOB
column. A large number of extents are created incrementally as the LOB size
grows. Therefore, the parameter should be set to a value that is large enough to
hold all the LOBs for the column. Alternatively, you could set it to UNLI M TED.

Use a Large Extent Size:

For every new extent created, Oracle generates undo information for the header
and other metadata for the extent. If the number of extents is large, then the
rollback segment can be saturated. To get around this, choose a large extent size,
say 100 megabytes, to reduce the frequency of extent creation, or commit the
transaction more often to reuse the space in the rollback segment.

Creating a Tablespace and Table to Store Gigabyte LOBs

The following example illustrates how to create a tablespace and table to store
gigabyte LOBs.

ORACLE

CREATE TABLESPACE | obt bs1 DATAFILE '/your/own/data/directory/lobtbs_1.dat'
SI ZE 2000M REUSE ONLI NE NOLOGG NG DEFAULT STORAGE (MAXEXTENTS UNLI M TED);

ALTER TABLESPACE | obt bs1 ADD DATAFI LE

"/your/own/ dat a/ di rectory/| obths_2.dat' SIZE 2000M REUSE;

CREATE TABLE print _nedi a_backup

(product _i d NUVBER(6),

ad_i d NUMBER(6),

ad_conposi te BLOB,

ad_sourcet ext CLOB,

ad_finaltext CLOB,

ad_fltextn NCLOB,

ad_textdocs_ntab textdoc_tab,

ad_phot o BLOB,

ad_graphi c BLOB,

ad_header adheader _typ)

NESTED TABLE ad_t ext docs_ntab STORE AS textdocs_nest edt ab5

14-19

Chapter 14
Guidelines for Creating Gigabyte LOBs

LOB(ad_sourcetext) STORE AS (TABLESPACE | obtbsl CHUNK 32768 PCTVERSI ON 0
NOCACHE NOLOGG NG
STORAGE(| NI TI AL 100M NEXT 100M MAXEXTENTS
UNLI M TED PCTI NCREASE 0));

Note the following with respect to this example:

* The storage clause in this example is specified in the CREATE TABLESPACE
statement.

* You can specify the storage clause in the CREATE TABLE statement as an
alternative.

e The storage clause is not allowed in the CREATE TEMPORARY TABLESPACE
statement.

» Setting the PCTI NCREASE parameter to O is recommended for gigabyte LOBs. For
small, or medium size lobs, the default PCTI NCREASE value of 50 is recommended
as it reduces the number of extent allocations.

ORACLE 14-20

Performance Guidelines

There are performance guidelines for applications that use LOB data types.

* LOB Performance Guidelines
* Moving Data to LOBs in a Threaded Environment

 LOB Access Statistics

LOB Performance Guidelines

LOBs can be accessed using the Data Interface or through the LOB APIs. This section
provides performance guidelines while using LOBs.

Related Topics

e Al LOBs

* Persistent LOBs
e Temporary LOBs

All LOBs

The following guidelines will help you get the the best performance when using LOBs,
and minimize the number of round trips to the server:

e To minimize I/O:

— Read and write data at block boundaries. This optimizes 1/O in many ways,
e.g., by minimizing UNDO generation. For temporary LOBs and securefile
LOBs, usable data area of the tablespace block size is returned by the
following APIs: DBMS_LOB. GETCHUNKSI ZE in PLSQL, and
OCl LobGet ChunkSi ze() in OCI. When writing in a loop, design your code so
that one write call writes everything that needs to go in a database block, thus
ensuring that consecutive writes don't write to the same block.

— Read and write large pieces of data at a time.

— The 2 recommendations above can be combined by reading and writing in
large whole number multiples of database block size returned by the
DBMS_LOB. GETCHUNKSI ZE/ OCl LobGet ChunkSi ze() APIL.

e To minimize the number of round trips to the server:

— If you know the maximum size of your lob data, and you intend to read or write
the entire LOB, use the Data Interface as outlined below. You can allocate the
entire size of lob as a single buffer, or use piecewise / callback mechanisms.

ORACLE 15-1

Chapter 15
LOB Performance Guidelines

* For read operations, define the LOB as character/binary type using the
OCl Def i neByPos() function in OCI and the Def i neCol umType() function

in JDBC.

* For write operations, bind the LOB as character/binary type using the
CCl Bi ndByPos() function in OCI and the set String() or set Byt es()
methods in JDBC.

— Otherwise, use the LOB APIs as follows:

* Use LOB prefetching for reads. Define the LOB prefetch size such that it
can accommodate majority of the LOB values in the column.

* Use piecewise or callback mechanism while using OCl LobRead?2 or
OCl LobW i t e2 operations to minimize the roundtrips to the server.

¢ See Also:

Data Interface for Persistent LOBs

Persistent LOBs

In addition to the performance guidelines applicable to all LOBs described earlier, here
are some performace guidelines while using persistent LOBs.

* Maximize writing to a single LOB in consecutive calls within a transaction.
Frequently switching across LOBs or having interleaving DML statements prevent
caching from reaching its maximum efficiency.

» Avoid taking savepoints or commiting too frequently. This neutralizes the
advantage of caching while writing.

¢ Note:

Oracle recommends Securefile LOBs for storing persistent LOBs, hence this
chapter focuses only on Securefile storage. All mentions of "LOBs" in the
persistent LOB context is for Securefile LOBs unless otherwise mentioned.

Temporary LOBs

In addition to the guidelines described in "LOB Performance Guidelines" on LOB
performance in general, here are some guidelines for using temporary LOBSs:

* Use PGA memory to store temporary LOBs for improved performance.

» Use a separate temporary tablespace for temporary LOB storage instead of the
default system tablespace

This avoids device contention when copying data from persistent LOBs to
temporary LOBs.

ORACLE 15-2

ORACLE

Chapter 15
LOB Performance Guidelines

If you use the newly provided enhanced SQL semantics functionality in your
applications, then there are many more temporary LOBs created silently in SQL
and PL/SQL than before. Ensure that temporary tablespace for storing these
temporary LOBs is large enough for your applications. In particular, these
temporary LOBs are silently created when you use the following:

— SQL functions on LOBs

— PL/SQL built-in character functions on LOBs

— Variable assignments from VARCHAR2/RAWto CLOBs/BLOBs, respectively.
— Perform a LONGto-LOB migration

If SQL operators are used on LOBs, the PGA memory and temporary tablespace
must be large enough to accommodate the temporary LOBs generated by SQL
operators.

Free up temporary LOBs returned from SQL queries and PL/SQL programs

In PL/SQL, C (OCIl), Java and other programmatic interfaces, SQL query results or
PL/SQL program executions return temporary LOBs for operation/function calls on
LOBs. For example:

SELECT substr(CLOB Col unm, 4001, 32000) FROM ...
If the query is executed in PL/SQL, then the returned temporary LOBs are
automatically freed at the end of a PL/SQL program block. You can also explicitly

free the temporary LOBs at any time. In OCI and Java, the returned temporary
LOB must be explicitly freed.

Without proper deallocation of the temporary LOBs returned from SQL queries,
temporary tablespace is filled and you may observe performance degradation.

In PL/SQL, use NOCOPY to pass temporary LOB parameters by reference
whenever possible.

¢ See Also:

Oracle Database PL/SQL Language Referencefor more information on
passing parameters by reference and parameter aliasing

Take advantage of buffer cache on temporary LOBs.

Temporary LOBs created with the CACHE parameter set to true move through the
buffer cache. Otherwise temporary LOBs are read directly from, and written
directly to, disk.

For optimal performance, temporary LOBs use reference on read, copy on write
semantics. When a temporary LOB locator is assigned to another locator, the
physical LOB data is not copied. Subsequent READ operations using either of the
LOB locators refer to the same physical LOB data. On the first WRITE operation
after the assignment, the physical LOB data is copied in order to preserve LOB
value semantics, that is, to ensure that each locator points to a unique LOB value.
This performance consideration mainly applies to the PL/SQL and OCI
environments.

In PL/SQL, reference on read, copy on write semantics are illustrated as follows:

15-3

ORACLE

Chapter 15
LOB Performance Guidelines

LOCATORL BLOB;
LOCATOR2 BLOB;
DBMS_LOB. CREATETEMPORARY (LOCATORL, TRUE, DBVS_LOB. SESSI ON) ;

- LOB data is not copied in this assignnent operation:
LOCATOR2 : = LOCATOR;

- These read operations refer to the sane physical LOB copy:
DBMVS_LOB. READ(LOCATORL, ...);

DBMS_LOB. GETLENGTH(LOCATCOR, ...);

- A physical copy of the LOB data is made on WRITE:
DBMS_LOB. WRI TE(LOCATCR2, ...);

In OCI, to ensure value semantics of LOB locators and data,

CCl LobLocat or Assi gn() is used to copy temporary LOB locators and the LOB
Data. OCl LobLocat or Assi gn() does not make a round trip to the server. The
physical temporary LOB copy is made when LOB updates happen in the same
round trip as the LOB update API as illustrated in the following:

COCl LobLocat or *LOCI,
COCl LobLocat or *LOC2;
COCl LobCreateTenporary(... LOCL, ... TRUE, OCl _DURATI ON_SESSION);

/* No round-trip is incurred in the following call. */
COCl LobLocatorAssign(... LOCL, LOC2);

/* Read operations refer to the sane physical LOB copy. */
OCl LobRead2(... LOC1 ...)

/[* One round-trip is incurred to make a new copy of the
* OB data and to wite to the new LOB copy.

*|

OCl LobWite2(... LOCL ...)

/* LOC2 does not see the sanme LOB data as LOCL. */
OCl LobRead2(... LO22 ...)

If LOB value semantics are not intended, then you can use C pointers to achieve
reference semantics as illustrated in the following:

COCl LobLocat or *LOCI,
COCl LobLocat or *LOC2;
COCl LobCreateTenporary(... LOCL, ... TRUE, OCl _DURATI ON_SESSION);

/* Pointer is copied. LOCL and LOC2 refer to the sane LOB data. */
LOC2 = LOCL;

/* Wite to LOC2. */
OCl LobWite2(...LOC2...)

/* LOCL sees the change made to LOC2. */
OCl LobRead?2(...LOCL...)

Use OCI_OBJECT mode for temporary LOBs

To improve the performance of temporary LOBs on LOB assignment, use
OCl _OBJECT mode for OCl LobLocat or Assi gn() . In OCI _OBJECT mode, the database
tries to minimize the number of deep copies to be done. Hence, after

15-4

Chapter 15
Moving Data to LOBs in a Threaded Environment

OCl LobLocat or Assi gn() is done on a source temporary LOB in OCl _OBJECT mode,
the source and the destination locators point to the same LOB until any
modification is made through either LOB locator.

Moving Data to LOBs in a Threaded Environment

There are two possible procedures that you can use to move data to LOBs in a
threaded environment, one of which should be avoided.

Recommended Procedure

" Note:

e There is no requirement to create an empty LOB in this procedure.

* You can use the RETURNI NG clause as part of the | NSERT/ UPDATE
statement to return a locked LOB locator. This eliminates the need for
doing a SELECT- FOR- UPDATE, as mentioned in step 3.

The recommended procedure is as follows:

1. | NSERT an empty LOB, RETURNI NG the LOB locator.

2. Move data into the LOB using this locator.

3. COW T. This releases the ROW locks and makes the LOB data persistent.

Alternatively, you can insert more than 4000 bytes of data directly for the LOB columns
or LOB attributes.

Procedure to Avoid

The following sequence requires a new connection when using a threaded
environment, adversely affects performance, and is not recommended:

Create an empty (non-NULL) LOB

Perform | NSERT using the empty LOB

SELECT- FOR- UPDATE of the row just entered

Move data into the LOB

COW T. This releases the RONlocks and makes the LOB data persistent.

g ®» b PR

LOB Access Statistics

ORACLE

After Oracle Database 10g Release 2, three session-level statistics specific to LOBs
are available to users: LOB reads, LOB writes, and LOB writes unaligned.

Session statistics are accessible through the VSMYSTAT, V$SESSTAT, and VSSYSSTAT
dynamic performance views. To query these views, the user must be granted the
privileges SELECT _CATALOG ROLE, SELECT ON SYS.V_$MYSTAT view, and SELECT ON
SYS. V_$STATNAME view.

15-5

Chapter 15
LOB Access Statistics

LOB reads is defined as the number of LOB API read operations performed in the
session/system. A single LOB API read may correspond to multiple physical/logical
disk block reads.

LOB writes is defined as the number of LOB API write operations performed in the
session/system. A single LOB API write may correspond to multiple physical/logical
disk block writes.

LOB writes unaligned is defined as the number of LOB API write operations whose
start offset or buffer size is not aligned to the LOB block boundary. Writes aligned to
block boundaries are the most efficient write operations. The usable LOB block size of
a LOB is available through the LOB API (for example, using PL/SQL, by

DBMS_LOB. GETCHUNKSI ZE()).

The following simple example demonstrates how LOB session statistics are updated
as the user performs read/write operations on LOBs.

It is important to note that session statistics are aggregated across operations to all
LOBs accessed in a session; the statistics are not separated or categorized by objects
(that is, table, column, segment, object numbers, and so on).

In these examples, you reconnect to the database for each demonstration to clear the
V$MYSTAT. This enables you to see how the lob statistics change for the specific
operation you are testing, without the potentially obscuring effect of past LOB
operations within the same session.

¢ See also:

Oracle Database Reference, appendix E, "Statistics Descriptions"

Example of Retrieving LOB Access Statistics

ORACLE

This example demonstrates retrieving LOB access statistics.

rem
rem Set up the user
rem

CONNECT / AS SYSDBA,

SET ECHO ON;

GRANT SELECT CATALOG ROLE TO pm

GRANT SELECT ON sys.v_$nystat TO pm
GRANT SELECT ON sys.v_$statname TO pm

rem
remCreate a sinplified view for statistics queries
rem

CONNECT pm
SET ECHO ON;

DROP VI EW nyl obst at s;

CREATE VI EW nyl obst at s

AS

SELECT SUBSTR(n. nane, 1, 20) nane,
m val ue val ue

15-6

ORACLE

Chapter 15
LOB Access Statistics

FROM v$nystat m
v§statnane n
WHERE mstatistic# = n.statistic#
AND n. nane LIKE 'l 0ob%;

rem
remCreate a test table
rem

DROP TABLE t;
CREATE TABLE t (i NUMBER ¢ CLOB)
lob(c) STORE AS (Di SABLE STORAGE I N ROW;

rem
rem Popul ate sone data

rem

rem This should result in unaligned wites, one for
remeach row | ob popul at ed.

rem

CONNECT pm

SELECT * FROM nyl obst ats;

INSERT INTOt VALUES (1, 'a');

INSERT INTOt VALUES (2, rpad('a',4000,'a"));
COWM T,

SELECT * FROM nyl obst ats;

rem
remGet the lob length

rem

rem Conputing | ob I ength does not read |ob data, no change
remin read/wite stats.

rem

CONNECT pm

SELECT * FROM nyl obst ats;
SELECT LENGTH(c) FROMt;
SELECT * FROM nyl obst ats;

rem
rem Read the | obs

rem

rem Lob reads are perforned, one for each lob in the table.
rem

CONNECT pm

SELECT * FROM nyl obst ats;

SELECT * FROM t;

SELECT * FROM nyl obstats;

rem
rem Read and mani pul ate the lobs (through tenporary | obs)

rem

rem The use of conplex operators like "substr()" results in
remthe inplicit creation and use of temporary |obs. operations
remon tenmporary |obs also update |ob statistics.

rem

CONNECT pm

SELECT * FROM nyl obst ats;
SELECT substr(c, length(c), 1) FROMt;

15-7

ORACLE

Chapter 15
LOB Access Statistics

SELECT substr(c, 1, 1) FROMt;
SELECT * FROM nyl obst ats;

rem
rem Perform sone aligned overwites

rem

remOnly lob wite statistics are updated because both the
rembyte offset of the wite, and the size of the buffer
rembeing witten are aligned on the Iob block size.

rem
CONNECT pm
SELECT * FROM nyl obst ats;
DECLARE
| oc CLOB,
buf LONG
chunk NUMBER,
BEG N
SELECT ¢ INTOloc FROMt WHERE i =1

FOR UPDATE;

chunk : = DBMS_LOB. GETCHUNKSI ZE(| oc) ;
chunk = chunk * floor(32767/chunk); /* integer nultiple of chunk */
buf :=rpad('b', chunk, 'b");

- aligned buffer Iength and of f set
DBVS_LOB. WRI TE(1 oc, chunk, 1, buf);
DBMS_LOB. W\RI TE(| oc, chunk, 1+chunk, buf);
COWM T,

END;

/

SELECT * FROM nyl obst ats;

rem
rem Perform sone unaligned overwites

rem

remBoth Iob wite and | ob unaligned wite statistics are

rem updat ed because either one or both of the wite byte offset
remand buffer size are unaligned with the Iob's chunksi ze.
rem

CONNECT pm
SELECT * FROM nyl obstats;
DECLARE
| oc CLCB,
buf LONG
BEG N
SELECT ¢ INTOloc FROMt WHERE i =1
FOR UPDATE;

buf := rpad('b', DBMS_LOB. GETCHUNKSI ZE(loc), 'b');

- unaligned buffer length
DBMS_LOB. WRI TE(| oc, DBMS_LOB. GETCHUNKSI ZE(l oc)-1, 1, buf);

- unaligned start offset
DBMS_LOB. WRI TE(| oc, DBNMS_LOB. GETCHUNKSI ZE(l oc), 2, buf);

- unaligned buffer length and start offset
DBVS_LOB. WRI TE(| oc, DBMS_LOB. GETCHUNKSI ZE(1 oc)-1, 2, buf);

15-8

Chapter 15
LOB Access Statistics

COWM T,
END;
/
SELECT * FROM nyl obst at's;
DRCP TABLE t;
DROP VI EW nyl obst at s;

CONNECT / AS SYSDBA
REVOKE SELECT CATALOG ROLE FROM pm

REVOKE SELECT ON sys.v_$nystat FROM pm
REVOKE SELECT ON sys.v_$stat name FROM pm

QT

ORACLE 15-9

LOB Administration

This part introduces Large Objects (LOBs) and discusses general concepts for using
them in your applications.

This part contains these chapters:

* Managing LOBs: Database Administration

e Migrating Applications from LONGs to LOBs

ORACLE

Managing LOBs: Database Administration

You must perform various administrative tasks to set up, maintain, and use a database
that contains LOBs.

Topics:

Database Utilities for Loading Data into LOBs
Temporary LOB Management

BFILEs Management

Changing Tablespace Storage for a LOB
Managing LOB Signatures

< Note:

LOBs are not supported when the Container Database root and Pluggable
Databases are in different character sets. For more information, refer to
Relocating a PDB Using CREATE PLUGGABLE DATABASE.

Database Utilities for Loading Data into LOBs

Certain utilities are recommended for bulk loading data into LOB columns as part of
database setup or maintenance tasks.

The following utilities are recommended for bulk loading data into LOB columns as
part of database setup or maintenance tasks:

SQL*Loader

Oracle Data Pump

Note:

Application Developers: If you are loading data into a LOB in your
application, then using the LOB APIs is recommended. See Using LOB
APIs .

About Using SQL*Loader to Load LOBs

There are two general techniques for using SQL*Loader to load data into LOBs

ORACLE

You can use SQL*Loader to load data into LOBs in these ways:

Loading data from a primary data file

16-1

ORACLE

Chapter 16
Database Utilities for Loading Data into LOBs

Loading from a secondary data file using LOB files

Consider the following issues when loading LOBs with SQL*Loader:

For SQL*Loader conventional path loads, failure to load a particular LOB does not
result in the rejection of the record containing that LOB; instead, the record ends
up containing an empty LOB.

For SQL*Loader direct-path loads, the LOB could be empty or truncated. LOBs
are sent in pieces to the server for loading. If there is an error, then the LOB piece
with the error is discarded and the rest of that LOB is not loaded. In other words, if
the entire LOB with the error is contained in the first piece, then that LOB column
is either empty or truncated.

When loading from LOB fi | es, specify the maximum length of the field
corresponding to a LOB-type column. If the maximum length is specified, then it is
taken as a hint to help optimize memory usage. It is important that the maximum
length specification does not underestimate the true maximum length.

When using SQL*Loader direct-path load, loading LOBs can take up substantial
memory. If the message "SQL*Loader 700 (out of memory)" appears when loading
LOBs, then internal code is probably batching up more rows in each load call than
can be supported by your operating system and process memory. A work-around
is to use the ROWS option to read a smaller number of rows in each data save.

You can also use the Direct Path API to load LOBs.

Using LOB fil es is recommended when loading columns containing XML data in
CLOBs or XMLType columns. Consider the following validation criteria for XML
documents in determining whether to use direct-path load or conventional path
load with SQL*Loader:

— If the XML document must be validated upon loading, then use conventional
path load.

— Ifitis not necessary to ensure that the XML document is valid, or if you can
safely assume that the XML document is valid, then you can perform a direct-
path load. Direct-path load performs better because you avoid the overhead of
XML validation.

A conventional path load executes SQL | NSERT statements to populate tables in
an Oracle database.

A direct-path load eliminates much of the Oracle database overhead by formatting
Oracle data blocks and writing the data blocks directly to the database files.
Additionally, it does not compete with other users for database resources, so it can
usually load data at near disk speed. Considerations inherent to direct path loads,
such as restrictions, security, and backup implications, are discussed in Oracle
Database Utilities.

Tables to be loaded must already exist in the database. SQL*Loader never
creates tables. It loads existing tables that either contain data or are empty.

The following privileges are required for a load:
— You must have | NSERT privileges on the table to be loaded.

— You must have DELETE privileges on the table to be loaded, when using the
REPLACE or TRUNCATE option to empty out the old data before loading the new
data in its place.

16-2

Chapter 16
Database Utilities for Loading Data into LOBs

" See Also:
* Oracle Call Interface Programmer's Guide for more information
about Direct Path API

* Oracle Database Utilities for more information about using
SQL*Loader to load LOBs

About Using SQL*Loader to Populate a BFILE Column

You can load data from files in the file system into a BFI LE column.

You can load data from files in the file system into a BFI LE column.

See Also:

"Supported Environments for BFILE APIs"

Note that the BFI LE data type stores unstructured binary data in operating system files
outside the database. A BFI LE column or attribute stores a file locator that points to a
server-side external file containing the data.

¢ Note:

A particular file to be loaded as a BFI LE does not have to actually exist at the
time of loading.

SQL*Loader assumes that the necessary DI RECTORY objects have been created.

¢ See Also:

See "Directory Objects" and the sections following it for more information on
creating directory objects

A control file field corresponding to a BFI LE column consists of the column name
followed by the BFI LE directive.

The BFI LE directive takes as arguments a DI RECTORY object name followed by a BFI LE
name. Both of these can be provided as string constants, or they can be dynamically
sourced through some other field.

ORACLE 16-3

ORACLE

Chapter 16
Database Utilities for Loading Data into LOBs

¢ See Also:

Oracle Database Ultilities for details on SQL*Loader syntax

The following two examples illustrate the loading of BFI LEs.

" Note:

You may be required to set up the following data structures for certain
examples to work (you are prompted for the password):

CONNECT system

Enter password:

Connect ed.

GRANT CREATE ANY DI RECTCRY to sanp;

CONNECT sanp

Enter password:

Connect ed.

CREATE OR REPLACE DI RECTORY adgr aphi ¢_photo as '/tnp';
CREATE OR REPLACE DI RECTORY adgraphic_dir as '/tnp';

In the following example based on the "Table for LOB Examples: The PM Schema
print_media Table", only the file name is specified dynamically.

Control file:

LOAD DATA
I NFI LE sanpl €9. dat
I NTO TABLE Print_nedia
FI ELDS TERM NATED BY ','
(product _id | NTEGER EXTERNAL(6),
Fi | eNane FI LLER CHAR(30),
ad_graphi ¢ BFI LE(CONSTANT "nodem graphi ¢_2268_21001", FileNane))

Data file:

007, nodem 2268. | pg,
008, nonitor_3060.] pg,
009, keyboard_2056. | pg,

" Note:

product _| Ddefaults to (255) if a size is not specified. It is mapped to the file
names in the data file. ADGRAPHI C_PHOTO s the directory where all files are
stored. ADGRAPHI C DI Ris a DI RECTORY object created previously.

In the following example, the BFI LE and the DI RECTCRY objects are specified
dynamically.

Control file:

16-4

Chapter 16
Database Utilities for Loading Data into LOBs

LOAD DATA

| NFI LE sanpl e10. dat

I NTO TABLE Print_nedia

FI ELDS TERM NATED BY ','

(
product _i d | NTEGER EXTERNAL(6),
ad_graphic BFILE (DirNane, FileNane),
Fil eName FILLER CHAR(30),
DirName FILLER CHAR(30)

)

Data file:

007, noni t or _3060. j pg, ADGRAPHI C_PHOTQ,
008, modem 2268. j pg, ADGRAPHI C_PHOTQ,
009, keyboar d_2056. j pg, ADGRAPHI C DI R,

" Note:

Di r Nane FI LLER CHAR (30) is mapped to the data file field containing the
directory name corresponding to the file being loaded.

About Using Oracle Data Pump to Transfer LOB Data

ORACLE

You can use Oracle Data Pump to transfer LOB data from one database to another.
Oracle Data Pump can transfer LOB data from one database to another.

Beginning with Oracle Database 12c, Data Pump has an option to create all LOB
columns as SecureFiles LOBs.

See Also:

"SecureFiles LOB Storage" for an introduction to SecureFiles LOBs

When Data Pump recreates tables, however, it recreates them as they existed in the
source database, by default. Therefore, if a LOB column was a BasicFiles LOB in the
source database, Data Pump attempts to recreate it as a BasicFiles LOB in the
imported database. You can force creation of LOBs as SecureFiles LOBs in the tables
being recreated using a TRANSFORM parameter for the command line or a LOB_STORAGE
parameter for the DBMS_DATAPUMP and DBMS_METADATA packages.

" Note:

The transform name is not valid in transportable import.

16-5

Chapter 16
Temporary LOB Management

¢ See Also:

e Oracle Database Ultilities for specific table syntax used with SecureFiles
LOBs

e Oracle Database Ultilities for details on using Oracle Data Pump

Temporary LOB Management

The database keeps track of temporary LOBs in each session, and the application can
determine which user owns the temporary LOB by using the session ID.

The database provides a v$ view called v$t enpor ary_| obs. As a database
administrator, you can use this view to monitor and guide any emergency cleanup of
temporary space used by temporary LOBs.

Temporary LOB data is stored in temporary tablespaces. As a database administrator,
you control data storage resources for temporary LOB data by controlling user access
to temporary tablespaces and by the creation of different temporary tablespaces.

¢ See Also:

Oracle Database Administrator's Guide for details on managing temporary
tablespaces

BFILEs Management

You need to perform various administrative tasks to manage databases that contain
BFI LEs.

Topics:
e Rules for Using Directory Objects and BFILEs
e Setting Maximum Number of Open BFILEs

Rules for Using Directory Objects and BFILES

ORACLE

You can create a directory object or BFI LE objects if these conditions are met.

When you create a directory object or BFI LE objects, ensure that the following
conditions are met:

e The operating system file must not be a symbolic or hard link.

e The operating system directory path named in the Oracle DIRECTORY object
must be an existing operating system directory path.

e The operating system directory path named in the Oracle DIRECTORY object
should not contain any symbolic links in its components.

16-6

Chapter 16
Changing Tablespace Storage for a LOB

Setting Maximum Number of Open BFILEs

A limited number of BFI LEs can be open simultaneously in each session.

The initialization parameter, SESSI ON_MAX_OPEN_FI LES, defines an upper limit on the
number of simultaneously open files in a session.

The default value for this parameter is 10. Using this default, you can open a
maximum of 10 files at the same time in each session. To alter this limit, the database
administrator must change the parameter value in the i ni t. or a file. For example:

SESSI ON_MAX_OPEN_FI LES=20
If the number of unclosed files reaches the SESSI ON_ MAX_OPEN_FI LES value, then you

cannot open additional files in the session. To close all open files, use the
DBVS_LOB. FI LECLOSEALL call.

Changing Tablespace Storage for a LOB

ORACLE

Database administrators use certain techniques to change the default storage for a
LOB.

As the database administrator, you can use the following techniques to change the
default storage for a LOB after the table has been created:

Oracle recommends usage of ALTER TABLE. .. MOVE instead of ALTER TABLE. . .
MODI FY to change the storage properties of LOB column. It is efficient because it
executes in parallel without generating undo logs.

* Using ALTER TABLE... MOVE: You can also use the MOVE clause of the ALTER
TABLE statement to change LOB tablespace storage. For example:

ALTER TABLE test MVE
TABLESPACE t bs1
LGB (I obl, |0b2)
STORE AS (
TABLESPACE t bs2
DI SABLE STORAGE | N ROW:

» Using ALTER TABLE... MODIFY: You can change LOB tablespace storage as

follows:
ALTER TABLE test MDD FY
LOB (I ob1)
STORAGE
NEXT 4M

MAXEXTENTS 100
PCTI NCREASE 50

)

16-7

Chapter 16
Managing LOB Signatures

< Note:

The ALTER TABLE syntax for modifying an existing LOB column uses the
MODI FY LOB clause, not the LOB. . . STORE AS clause. The LOB. . . STORE AS
clause is only for newly added LOB columns.

There are two kinds of LOB storage clauses: LOB st orage_cl ause and
modi fy LOB storage_clause. Inthe ALTER TABLE MODI FY LOB statement,
you can only specify the nodi fy LOB storage_cl ause.

Managing LOB Signatures

Starting from Oracle Database 19c release, you can configure signature-based
security for large object (LOB) locators using the LOB_SI GNATURE_ENABLE initialization
parameter.

* To enable signature, set the LOB_SI GNATURE_ENABLE initialization parameter at
init.ora, or using the following ALTER SYSTEMcommand. Also ensure that you
have set the compatibility to 12.2.0.2 or above.

ALTER SYSTEM SET LOB_SI GNATURE_ENABLE = [TRUE| FALSE];

* The following ALTER statement helps to encrypt, re-key, and delete the signature
keys.

ALTER DATABASE DI CTI ONARY [ENCRYPT| REKEY| DELETE] CREDENTI ALS;

For more information, refer to the Oracle Database Security Guide.

Related Topics

e Oracle Database Security Guide

ORACLE 16-8

Migrating Columns from LONGs to LOBs

There are techniques for migrating tables that use LONG data types to LOB data types.
Topics:

* Benefits of Migrating LONG Columns to LOB Columns

» Preconditions for Migrating LONG Columns to LOB Columns

* Determining how to Optimize the Application Using utldtree.sql

e Converting Tables from LONG to LOB Data Types

* Migrating Applications from LONGs to LOBs

¢ See Also:

For support for LOB data types in various programming environments:
— SQL Semantics and LOBs
— PL/SQL Semantics for LOBs

— Data Interface for Persistent LOBs

Benefits of Migrating LONG Columns to LOB Columns

There are many benefits to migrating table columns from LONG data types to LOB data
types.

¢ Note:
You can use various techniques to do either of the following:
e Convert columns of type LONGto either CLOB or NCLOB columns
* Convert columns of type LONG RAWto BLOB type columns

Unless otherwise noted, discussions in this chapter regarding LONG to LOB
conversions apply to both of these data type conversions.

These items compare the semantics of LONG and LOB data types in various application
development scenarios:

* The number of LONG type columns is limited. Any given table can have a maximum
of only one LONG type column. The number of LOB type columns in a table is not
limited.

ORACLE 17-1

Chapter 17
Preconditions for Migrating LONG Columns to LOB Columns

Preconditions for Migrating LONG Columns to LOB
Columns

Various preconditions must be met before converting a LONG column to a LOB column.

¢ See Also:

"Migrating Applications from LONGs to LOBs" before converting your table to
determine whether any limitations on LOB columns prevent you from
converting to LOBs.

Dropping a Domain Index on a LONG Column Before Converting to a
LOB

Any domain index on a LONG column must be dropped before converting the LONG
column to LOB column.

¢ See Also:

Rebuilding Indexes on Columns Converted from LONG to LOB Data Types

Preventing Generation of Redo Space on Tables Converted to LOB
Data Types

Generation of redo space can cause performance problems during the process of
converting LONG columns. Redo changes for the table are logged during the conversion
process only if the table has LOGAE NG on.

Redo changes for the column being converted from LONGto LOB are logged only if the
storage characteristics of the LOB column indicate LOGE NG. The logging setting
(LOGE NG or NOLOGAE NG) for the LOB column is inherited from the tablespace in which
the LOB is created.

To prevent generation of redo space during migration, do the following before
migrating your table (syntax is in BNF):

1. ALTER TABLE Long_tab NOLOGG NG

2. ALTER TABLE Long_tab MODIFY (long_col CLOB [DEFAULT <default_val >])
LOB (long_col) STORE AS (NOCACHE NOLOGG NG ;

Note that you must also specify NOCACHE when you specify NOLOGE NG in the STORE
AS clause.

3. ALTER TABLE Long_tab MODIFY LOB (long_col) (CACHE);
4. ALTER TABLE Long_tab LOGGE NG

ORACLE 17-2

Chapter 17
Determining how to Optimize the Application Using utldtree.sq|

5. Make a backup of the tablespaces containing the table and the LOB column.

Determining how to Optimize the Application Using
utldtree.sq|

When you migrate your table from LONGto LOB column types, in PL/SQL, certain parts
of your application may require rewriting. You can use the utility, r dbns/ adm n/
utl dtree. sgl, to determine which parts.

The ut | dtree. sgl utility enables you to recursively see all objects that are dependent
on a given object. For example, you can see all objects which depend on a table with a
LONG column. You can only see objects for which you have permission.

Instructions on how to use ut| dtree. sql are documented in the file itself. Also,
utl dtree. sqgl is only needed for PL/SQL. For SQL and OCI, you have no requirement
to change your applications.

Converting Tables from LONG to LOB Data Types

There are various issues and techniques for migrating existing tables from LONGto
LOB data types.

Topics:

* Migration Issues

e "Using ALTER TABLE to Convert LONG Columns to LOB Columns"
e "Copying a LONG to a LOB Column Using the TO_LOB Operator"

* "Online Redefinition of Tables with LONG Columns" where high availability is
critical

* "Using Oracle Data Pump to Migrate a Database" when you can convert using this
utility

Migration Issues

ORACLE

General issues concerning migration include the following:

* All constraints of your previous LONG columns are maintained for the new LOB
columns. The only constraint allowed on LONG columns are NULL and NOT NULL. To
alter the constraints for these columns, or alter any other columns or properties of
this table, you have to do so in a subsequent ALTER TABLE statement.

» If you do not specify a default value, then the default value for the LONG column
becomes the default value of the LOB column.

e Most of the existing triggers on your table are still usable, however UPDATE OF
triggers can cause issues.

¢ See Also:

Migrating Applications from LONGs to LOBs

17-3

Chapter 17
Converting Tables from LONG to LOB Data Types

Using ALTER TABLE to Convert LONG Columns to LOB Columns

You can use the ALTER TABLE statement in SQL to convert a LONG column to a LOB
column.

To do so, use the following syntax:

ALTER TABLE [<schema>.] <t abl e_name>
MODI FY (<l ong_col um_nane> { CLOB | BLOB | NCLOB }
[DEFAULT <default _val ue>]) [LOB_storage_cl ause];

For example, if you had a table that was created as follows:

CREATE TABLE Long_tab (id NUMBER, |ong_col LONG;

then you can change the column | ong_col in table Long_t ab to data type CLOB using
following ALTER TABLE statement:

ALTER TABLE Long_tab MODIFY (long_col CLOB);

¢ Note:

The ALTER TABLE statement copies the contents of the table into a new
space, and frees the old space at the end of the operation. This temporarily
doubles the space requirements.

Note that when using the ALTER TABLE statement to convert a LONG column to a LOB
column, only the following options are allowed:

e DEFAULT which enables you to specify a default value for the LOB column.

e« The LOB_storage_cl ause, which enables you to specify the LOB storage
characteristics for the converted column, can be specified in the MODI FY clause.

Other ALTER TABLE options are not allowed when converting a LONG column to a LOB
type column.

Copying a LONG to a LOB Column Using the TO_LOB Operator

ORACLE

If you do not want to use ALTER TABLE, then you can use the TO_LOB operator on a LONG
column to copy it to a LOB column. You can use the CREATE TABLE AS SELECT
statement or the | NSERT AS SELECT statement with the TO_LOB operator to copy data
from a LONG column to a CLOB or NCLOB column, or from a LONG RAWcolumn to a BLOB
column. For example, if you have a table with a LONG column that was created as
follows:

CREATE TABLE Long_tab (id NUMBER, |ong _col LONG;

then you can do the following to copy the column to a LOB column:

CREATE TABLE Lob_tab (id NUMBER, clob_col CLOB);
I NSERT | NTO Lob_tab SELECT id, TO LOB(long_col) FROMIong_tab;
COW T;

17-4

Chapter 17
Converting Tables from LONG to LOB Data Types

If the | NSERT returns an error (because of lack of undo space), then you can
incrementally migrate LONG data to the LOB column using the WHERE clause. After you
ensure that the data is accurately copied, you can drop the original table and create a
view or synonym for the new table using one of the following sequences:

DROP TABLE Long_t ab;
CREATE VI EWLong_tab (id, long_col) AS SELECT * from Lob_t ab;

or

DROP TABLE Long_t ab;
CREATE SYNONYM Long_tab FOR Lob_t ab;

This series of operations is equivalent to changing the data type of the column
Long_col of table Long_t ab from LONGto CLOB. With this technique, you have to re-
create any constraints, triggers, grants and indexes on the new table.

Use of the TO LOB operator is subject to the following limitations:

* Youcan use TO LOB to copy data to a LOB column, but not to a LOB attribute of
an object type.

* You cannot use TO_LOB with a remote table. For example, the following statements
do not work:

I NSERT | NTO tbl@iblink (1ob_col) SELECT TO LOB(Iong_col) FROMtbh2;
I NSERT INTO tbl (lob_col) SELECT TO LOB(Iong_col) FROM tb2@ibl i nk;
CREATE TABLE thl AS SELECT TO LOB(long_col) FROM th2@ibli nk;

e The TO LOB operator cannot be used in the CREATE TABLE AS SELECT statement to
convert a LONG or LONG RAWcolumn to a LOB column when creating an index
organized table.

To work around this limitation, create the index organized table, and then do an
| NSERT AS SELECT of the LONG or LONG RAWcolumn using the TO_LOB operator.

* You cannot use TO LOB inside any PL/SQL block.

Online Redefinition of Tables with LONG Columns

Tables with LONG and LONG RAWcolumns can be migrated using online table
redefinition. This technique is suitable for migrating LONG columns in database tables
where high availability is critical.

To use this technique, you must convert LONG columns to LOB types during the
redefinition process as follows:

* Any LONG column must be converted to a CLOB or NCLOB column.
e Any LONG RAWcolumn must be converted to a BLOB column.

This conversion is performed using the TO LOB() operator in the column mapping of
the DBVS_REDEFI NI TI ON. START_REDEF_TABLE() procedure.

ORACLE 17-5

ORACLE

Chapter 17
Converting Tables from LONG to LOB Data Types

< Note:

You cannot perform online redefinition of tables with LONG or LONG RAW
columns unless you convert the columns to LOB types as described in this
section.

General tasks involved in the online redefinition process are given in the following list.
Issues specific to converting LONG and LONG RAWcolumns are called out. See the
related documentation referenced at the end of this section for additional details on the
online redefinition process that are not described here.

Create an empty interim table. This table holds the migrated data when the
redefinition process is done. In the interim table:

— Define a CLOB or NCLOB column for each LONG column in the original table that
you are migrating.

— Define a BLOB column for each LONG RAWcolumn in the original table that you
are migrating.

Start the redefinition process. To do so, call
DBMS_REDEFI NI TI ON. START_REDEF_TABLE and pass the column mapping using the
TO _LOB operator as follows:

DBMS_REDEFI NI TI ON. START_REDEF_TABLE(
' schema_nane',
‘original _table',
“interimtable',
'TO_LOB(l ong_col _name) | ob_col _nane',
"options_flag',
"orderby_cols');

where | ong_col _nane is the name of the LONG or LONG RAWcolumn that you are
converting in the original table and | ob_col _nane is the name of the LOB column
in the interim table. This LOB column holds the converted data.

Call the DBMS_REDEFI NI TI ON. COPY_TABLE_DEPENDENTS procedure as described in
the related documentation.

Call the DBMS_REDEFI NI TI ON. FI Nl SH REDEF_TABLE procedure as described in the
related documentation.

Parallel Online Redefinition

On a system with sufficient resources for parallel execution, redefinition of a LONG
column to a LOB column can be executed in parallel under the following conditions:

In the case where the destination table is non-partitioned:

The segment used to store the LOB column in the destination table belongs to a
locally managed tablespace with Automatic Segment Space Management (ASSM)
enabled, which is now the default.

There is a simple mapping from one LONG column to one LOB column, and the
destination table has only one LOB column.

17-6

Chapter 17
Converting Tables from LONG to LOB Data Types

In the case where the destination table is partitioned, the normal methods for parallel
execution for partitioning apply. When the destination table is partitioned, then online
redefinition is executed in parallel.

Example of Online Redefinition
The following example demonstrates online redefinition with LOB columns.

REM Grant privileges required for online redefinition.
GRANT execute ON DBVMS_REDEFI NI TION TO pm

GRANT ALTER ANY TABLE TO pm

GRANT DROP ANY TABLE TO pm

GRANT LOCK ANY TABLE TO pm

GRANT CREATE ANY TABLE TO pm

GRANT SELECT ANY TABLE TO pm

REM Privileges required to performcloning of dependent objects.
GRANT CREATE ANY TRI GGER TO pm
GRANT CREATE ANY | NDEX TO pm

connect pnf passwd

drop table cust;

create table cust(c_id nunber primary key,
c_zip nunber,
c_name varchar(30) default null,
c_long long

)
insert into cust values(1, 94065, 'hhh', "ttt');

-- Creating InterimTable
-- There is no requirenent to specify constraints because they are
-- copied over fromthe original table.
create table cust_int(c_id nunber not null,
c_zip nunber,
c_name varchar(30) default null,

c_long clob
);

declare
col _mappi ng varchar2(1000);
BEG N
-- map all the colums in the interimtable to the original table
col _mapping : =

‘c_id c_id , "]

‘c_zip c_zip, "||

'c_nane c_name, '||

"to_lob(c_long) c_long';
dbns_redefinition.start_redef _table('pm, "cust', 'cust_int', col_mapping);
END;
/
declare
error_count pls_integer := 0;
BEG N

dbns_redefinition. copy_table_dependents('pm, 'cust’, 'cust_int',
1, true, true, true, false,
error_count);
dbns_output.put_line("errors :="' || to_char(error_count));

ORACLE 17-7

Chapter 17
Migrating Applications from LONGs to LOBs

END;
/

exec dbnms_redefinition.finish_redef _table('pm, 'cust', 'cust_int');

- Drop the interimtable
drop table cust_int;

desc cust;

- The following insert statement fails. This illustrates
- that the primary key constraint on the c_id colum is
- preserved after nigration.

insert into cust values(1, 94065, 'hhh', "ttt');

select * fromcust;

Note:

Related documentation provides additional details on the redefinition
process:

e Oracle Database Administrator's Guide gives detailed procedures and
examples of redefining tables online.

e Oracle Database PL/SQL Packages and Types Reference includes
information on syntax and other details on usage of procedures in the
DBMS_REDEFI NI TI ON package.

Using Oracle Data Pump to Migrate a Database

If you are exporting data as part of a migration to a new database, create a table on
the destination database with LOB columns and Data Pump calls the LONG-to-LOB
function implicitly.

See Also:

Oracle Database Utilities for more information about using Oracle Data
Pump

Migrating Applications from LONGs to LOBs

There are differences between LONG and LOB data types that may impact your
application migration plans or require you to modify your application.

About Migrating Applications from Longs to LOBs

Most APIs that work with LONG data types in the PL/SQL and OCI environments are
enhanced to also work with LOB data types.

ORACLE 17-8

Chapter 17
Migrating Applications from LONGSs to LOBs

These APIs are collectively referred to as the data interface for persistent LOBs, or
simply the data interface. Among other things, the data interface provides the following
benefits:

» Changes needed are minimal in PL/SQL and OCI applications that use tables with
columns converted from LONGto LOB data types.

* You can work with LOB data types in your application without having to deal with
LOB locators.

" See Also:

— Data Interface for Persistent LOBs for details on PL/SQL and OCI
APIs included in the data interface.

— SQL Semantics and LOBs for details on SQL syntax supported for
LOB data types.

— PL/SQL Semantics for LOBs for details on PL/SQL syntax supported
for LOB data types.

LOB Columns Are Not Allowed in Clustered Tables

LOB columns are not allowed in clustered tables, whereas LONGs are allowed. If a table
is a part of a cluster, then any LONG or LONG RAWcolumn cannot be changed to a LOB
column.

LOB Columns Are Not Allowed in AFTER UPDATE OF Triggers

You cannot have LOB columns in the UPDATE OF list of an AFTER UPDATE OF trigger.
LONG columns are allowed in such triggers. For example, the following create trigger
statement is not valid:

CREATE TABLE t (| obcol CLOB);
CREATE TRIGGER trig AFTER UPDATE OF lobcol ONt ...;

All other triggers work on LOB columns.

Rebuilding Indexes on Columns Converted from LONG to LOB Data

Types

ORACLE

Indexes on any column of the table being migrated must be manually rebuilt after
converting any LONG column to a LOB column. This includes function-based indexes.

Any function-based index on a LONG column is unusable during the conversion process
and must be rebuilt after converting. Application code that uses function-based
indexing should work without modification after converting.

Note that, any domain indexes on a LONG column must be dropped before converting
the LONG column to LOB column. You can rebuild the domain index after converting.

To rebuild an index after converting, use the following steps:

17-9

Chapter 17
Migrating Applications from LONGs to LOBs

1. Select the index from your original table as follows:

SELECT i ndex_nane FROM user _i ndexes WHERE tabl e_name=' LONG_TAB';
Note:
The table name must be capitalized in this query.

2. For the selected index, use the command:

ALTER | NDEX <i ndex> REBU LD

Empty LOBs Compared to NULL and Zero Length LONGS

A LOB column can hold an empty LOB. An empty LOB is a LOB locator that is fully
initialized, but not populated with data. Because LONG data types do not use locators,
the empty concept does not apply to LONG data types.

Both LOB column values and LONG column values, inserted with an initial value of NULL
or an empty string literal, have a NULL value. Therefore, application code that uses
NULL or zero-length values in a LONG column functions exactly the same after you
convert the column to a LOB type column.

In contrast, a LOB initialized to empty has a non-NULL value as illustrated in the
following example:

CREATE TABLE | ong_tab(id NUMBER, |ong_col LONG);
CREATE TABLE | ob_tab(id NUMBER |ob_col CLOB);

I NSERT I NTO I ong_tab values(1, NULL);

REM A zero length string inserts a NULL into the LONG col um:
I NSERT | NTO | ong_tab values(1, "');

I NSERT | NTO | ob_tab val ues(1, NULL);

REM A zero length string inserts a NULL into the LOB col um:
I NSERT I NTO | ob_tab values(1, '');

REM Inserting an enpty LOB inserts a non-NULL val ue:
I NSERT | NTO | ob_tab val ues(1, enpty_clob());

DROP TABLE | ong_t ab;
DROP TABLE | ob_t ab;

Overloading with Anchored Types

ORACLE

For applications using anchored types, some overloaded variables resolve to different
targets during the conversion to LOBs. For example, given the procedure p overloaded
with specifications 1 and 2:

procedure p(l long) is ...; -- (specification 1)
procedure p(c clob) is ...; -- (specification 2)

and the procedure call:

17-10

Chapter 17
Migrating Applications from LONGSs to LOBs

decl are
var |ongtab.|ongcol % ype;
BEG N

p(var);
END:; o

Prior to migrating from LONGto LOB columns, this call would resolve to specification 1.
Once | ongt ab is migrated to LOB columns this call resolves to specification 2. Note
that this would also be true if the parameter type in specification 1 were a CHAR,
VARCHAR2, RAW LONG RAW

If you have migrated you tables from LONG columns to LOB columns, then you must
manually examine your applications and determine whether overloaded procedures
must be changed.

Some applications that included overloaded procedures with LOB arguments before
migrating may still break. This includes applications that do not use LONG anchored
types. For example, given the following specifications (1 and 2) and procedure call for
procedure p:

procedure p(n nunber) is ...; -- (D)
procedure p(c clob) is ...; -- (2)
p('123"); -- procedure call

Before migrating, the only conversion allowed was CHAR to NUMBER, so specification 1
would be chosen. After migrating, both conversions are allowed, so the call is
ambiguous and raises an overloading error.

Some Implicit Conversions Are Not Supported for LOB Data Types

ORACLE

PL/SQL permits implicit conversion from NUVBER, DATE, ROV | D, Bl NARY_| NTEGER, and
PLS_| NTEGER data types to a LONG, however, implicit conversion from these data types
to a LOB is not allowed.

If your application uses these implicit conversions, then you have to explicitly convert
these types using the TO_CHAR operator for character data or the TO_ RAWoperator for
binary data. For example, if your application has an assignment operation such as:

nunber _var :=long_var; -- The RHSis a LOB variable after converting.

then you must modify your code as follows:

number _var := TO CHAR(l ong_var);
- Assuming that long_var is of type CLOB after conversion

The following conversions are not supported for LOB types:
* BLOBto VARCHAR2, CHAR, or LONG
e CLOBto RAWor LONG RAW

This applies to all operations where implicit conversion takes place. For example if you
have a SELECT statement in your application as follows:

SELECT | ong_raw_col um | NTO ny_varchar2 VAR ABLE FROM ny_t abl e

17-11

ORACLE

Chapter 17
Migrating Applications from LONGs to LOBs

and | ong_raw_col unm is a BLOB after converting your table, then the SELECT statement
produces an error. To make this conversion work, you must use the TO RAWoperator to
explicitly convert the BLOB to a RAWas follows:

SELECT TO RAW I ong_raw_col unm) | NTO ny_varchar2 VAR ABLE FROM ny_tabl e

The same holds for selecting a CLOB into a RAWvariable, or for assignments of CLOB to
RAWand BLOB to VARCHAR2.

17-12

Oracle File System (OFS) Server

The OFS server is a new background process that will be created as part of instance
startup and it will contain several pools of Oracle threads to work as file system server
threads. The main job of this background process is to manage the worker threads.

This part contains the following chapters:

* Introducing Network File System (NFS)
* Using OFS

ORACLE

Introducing Network File System (NFS)

NFS protocol is a widely used file system protocol to access storage across network.

" Note:

Oracle objects exported through OFS server can be accessed by NFS clients
by mounting them on the client machines

Topics:
* Prerequisites to Access Storage Through NFS Server
* NFS Security

Prerequisites to Access Storage Through NFS Server

The prerequisites to access storage through NFS server are as follows:

* DBFS file system must be created before using OFS.
* You should be able to mount the file systems exported by the database.

* NFS server must be configured with KERNEL module.

Note:

The KERNEL module is supported through FUSE driver for Linux.

NFS Security

Starting from Oracle Database 12c Release 2 (12.2.0.1), OFS will use the OS
authentication model to authorize NFS client users. If the user is accessing a local
node (where the Oracle instance is running), the access to each file in the file system
is controlled through Unix Access Control List set for each object. On Linux, OFS
uses FUSE to receive file system requests from the OS kernel or NFS client. This
requires user _al | ow_ot her parameter to be set in /et c/ f use. conf configuration file if
an OS user other than the r oot user and oracle user need to access the file system.

Note:

Users can also be configured with an Oracle password to log into Oracle
client tools like SQL* Pl us to execute SQL's.

ORACLE 18-1

Kerberos

Chapter 18
NFS Security

If the network is not secure, the customer is advised to setup Kerberos to authenticate
the user using OS NFS.

Note:

e The Kerberos authentication is available from NFS version 4 onwards. If
the OFS is exported via NFS version 3, the authentication is performed
using AUTH_SYS.

e For local node, the authentication is performed using AUTH_SYS
irrespective of how the OFS is exported (NFS version 3 or NFS version
4).

This section contains the following topic:

 Kerberos

Kerberos is the widely used security mechanism that provides all three flavors of
security:

* Authentication
* Integrity check
e Privacy

Kerberos uses encryption technology, Key Distribution Center(KDC), and an arbitrator
to perform secure authentication on open networks. Kerberos Infrastructure consists of
Kerberos software, secured authentication servers, centralized account and password
store, and systems configured to authenticate through the Kerberos protocol. The OS
NFS server handles the complete authentication and integrity checks by using
kerberos principal name as the user name. Once the authentication is performed, the
requests passed to the Oracle kernel are handled based on the user name passed
through the VFS 1/O request.

Topics:

e Configuring Kerberos Server in Linux

Configuring Kerberos Server in Linux

ORACLE

The steps to configure Kerberos server in a Linux system is as follows:

1. Install Kerberos software in the Linux system.

2. Check if the daemons are running using the following commands.

| sbin/chkconfig krb5kdc on
| sbin/chkconfig kadnin on

18-2

Chapter 18
NFS Security

3. If the daemons are not running use the following commands to start the daemons
manually:

/etc/rc.d/init.d/ krb5kdc start
letc/rc.d/init.d/ kadm n start

4. Add user principal using the kadni n. | ocal command.

Example:

kadm n. | ocal : addprinc <scott>

ORACLE 18-3

Using OFS

The OFS implementation includes creating and accessing the file system and
managing it.

Topics:

e Limitations of using OFS

* OFS Configuration Parameters
* OFS Client Interface

Limitations of using OFS

Use of OFS is subjected to the following limitations:

e DBFS mounted with ASM storage shows wrong mount size.

e OFS mounted with local storage shows wrong mount size.
OFS Configuration Parameters

Table Table 19-1 specifies all the parameters that enable NFS access in the database.

Table 19-1 OFS Configuration Parameters

Parameter Name Description

OFS_THREADS This parameter is used to set the number of
OFS worker threads to handle OFS requests.
Possible values:

* Aninteger value in the range of 2-128
e Default value is 4

OFS Client Interface

The OFS interface includes views and procedures that support OFS operations.
Topics:

« DBMS_FS Package

* Views for OFS

DBMS_FS Package

ORACLE 19-1

Chapter 19
OFS Client Interface

The DBM5_FS package enables users to perform operations on Oracle file system
(make, mount, unmount and destroy) in the Oracle database.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about Oracle OFS procedures.

Views for OFS

The views that support OFS operations start with V$OFS .

¢ See Also:

Oracle Database Reference for the columns and data types of these views.

ORACLE 19-2

Database File System (DBFS)

ORACLE

This part covers issues that you must consider when designing applications that use
Database File System (DBFS) and DBFS content stores. Note: In most situations, the
DBFS requires SecureFiles LOBs, which are discussed in Using Oracle LOB Storage.
SecureFiles is the default storage mechanism for LOBs starting with Oracle Database
12c¢.

This part contains these chapters:

e Introducing the Database File System
* DBFS SecureFiles Store

* DBFS Hierarchical Store

 DBFS Content API

* Creating Your Own DBFS Store

e Using DBFS

Introducing the Database File System

Topics:
* Why a Database File System?
* What Is Database File System (DBFS)?

« What Is a Content Store?

Why a Database File System?

Conceptually, a database file system is a file system interface placed on top of files
and directories that are stored in database tables.

Applications commonly use the standard SQL data types, BLOBs and CLOBs, to store
and retrieve files in the Oracle Database, files such as medical images, invoice
images, documents, videos, and other files. Oracle Database provides much better
security, availability, robustness, transactional capability, and scalability than
traditional file systems. Files stored in the database along with relational data are
automatically backed up, synchronized to the disaster recovery site using Data Guard,
and recovered together.

Database File System (DBFS) is a feature of Oracle Database that makes it easier for
users to access and manage files stored in the database. With this interface, access to
files in the database is no longer limited to programs specifically written to use BLOB
and CLOB programmatic interfaces. Files in the database can now be transparently
accessed using any operating system (OS) program that acts on files. For example,
ETL (extraction, transformation, and loading) tools can transparently store staging files
in the database and file-based applications can benefit from database features such
as Maximum Availability Architecture (MAA) without any changes to the applications.

What Is Database File System (DBFS)?

Database File System (DBFS) creates a standard file system interface on top of files
and directories that are stored in database tables.

Database File System (DBFS) creates a standard file system interface using a server
and clients.

About DBFS
e DBFS Server
 DBFS Client

About DBFS

DBFS is similar to NFS in that it provides a shared network file system that looks like a
local file system and has both a server component and a client component.

ORACLE 20-1

Chapter 20
What Is Database File System (DBFS)?

At the core of DBFS is the DBFS Content API, a PL/SQL interface in the Oracle
Database. It connects to the DBFS Content SPI, a programmatic interface which
allows for the support of different types of storage.

At the programming level, the client calls the DBFS Content API to perform a specific
function, such as delete a file. The DBFS Content API delete file function then calls the
DBFS Content SPI to perform that function.

In a user-defined DBFS, the user must implement a delete function based on the
specifications in the DBFS Content SPI, along with other functions in the specification.

Figure 20-1 Database File System (DBFS)

OClI
LOB
Interface
A
Java
LOB
- DBFS Interface
F'Iemgi'jf\ttem Command PIID_/BSFC?L
I Line Interface : PL/SQL
nterface Client Client LOB
4 4 Interface
/1/1 DBFS W
Links

DBFS Content API) N
"~ o000o
DBFS Content SPI I

S T

DBFS DBFS i User !
SecureFile Hierarchical| : Defined ;
Store Store : Store |

1T
R
el (_sioraie

DBFS Server

ORACLE

In DBFS, the file server is the Oracle database.

Files are stored as SecureFiles LOBs in database tables. An implementation of a file
system in the database is called a DBFS content store, for example, the DBFS
SecureFiles Store. A DBFS content store allows each database user to create one or
more file systems that can be mounted by clients. Each file system has its own
dedicated tables that hold the file system content.

The DBFS Content SPI supports different types of stores, as follows:

20-2

DBFS Client

Chapter 20
What Is Database File System (DBFS)?

DBFS SecureFiles Store: A DBFS content store that uses a table with a
SecureFiles LOB column to store the file system data. It implements POSIX-like
filesystem capabilities.

DBFS Hierarchical Store: A DBFS content store that allows files to be written to
any tape storage units supported by Oracle Recovery Manager (RMAN) or to a
cloud storage system.

User-defined Store: A content store defined by the user. This allows users to
program their own filesystems inside Oracle Database without writing any OS
code.

See Also:

e Creating Your Own DBFS Store
e DBFS Content API
e DBFS Hierarchical Store

For client systems, the Database File System offers several access methods.

The Database File System offers several access methods.

ORACLE

PL/SQL Client Interface

Database applications can access files in the DBFS store directly, through the
PL/SQL interface. The PL/SQL interface allows database transactions and read
consistency to span relational and file data.

DBFS Client Command-Line Interface

A client command-line interface named dbfs_cl i ent runs on each file system
client computer. dbfs_cl i ent allows users to copy files in and out of the database
from any host on the network. It implements simple file system commands such as
list and copy in a manner that is similar to shell utilities | s and r cp. The command
interface creates a direct connection to the database without requiring an OS
mount of DBFS.

File System Mount Interface

On Linux and Solaris, the dbf s_cl i ent also includes a mount interface that uses
the Filesystem in User Space (FUSE) kernel module to implement a file-system
mount point with transparent access to the files stored in the database. This does
not require any changes to the Linux or Solaris kernels. It receives standard file
system calls from the FUSE kernel module and translates them into OCI calls to the
PL/SQL procedures in the DBFS content store.

DBFS Links

DBFS Links, Database File System Links, are references from SecureFiles LOB
locators to files stored outside the database.

DBFS Links can be used to migrate SecureFiles from existing tables to other
storage.

20-3

Chapter 20
What Is a Content Store?

¢ See Also:

e Using DBFS
e DBFS Mounting Interface (Linux and Solaris Only)
e Database File System Links for information about using DBFS Links

* PL/SQL Packages for LOBs and DBFS for lists of useful DBVS_LOB
constants and methods

What Is a Content Store?

ORACLE

A content store is a collection of documents.

Each content store is identified by a unique absolute path name, represented as a
slash (/) followed by one or more component names that are each separated by a
slash. Some stores may implement only a flat namespace, others might implement
directories or folders implicitly, while still others may implement a comprehensive file
system-like collection of entities. These may include hierarchical directories, files,
symbolic links, hard links, references, and so on. They often include a rich set of
metadata associated with documents, and a rich set of behaviors with respect to
security, access control, locking, versioning, content addressing, retention control, and
S0 on.

Because stores are typically designed and evolve independently of each other,
applications that use a specific store are either written and packaged by the
developers of the store or else require the user to employ a store-specific API.
Designers who create a store-specific APl must have a detailed knowledge of the
schema of the database tables that are used to implement the store.

20-4

DBFS SecureFiles Store

There are certain procedures for setting up and using a DBFS SecureFiles Store.
Topics:

* Setting Up a SecureFiles Store

* Using a DBFS SecureFiles Store File System

* About DBFS SecureFiles Store Package DBMS_DBFS_SFS

Setting Up a SecureFiles Store

There are several aspects to setting up a SecureFiles Store.
This section shows how to set up a SecureFiles Store.

Topics:

e About Managing Permissions

e Creating or Setting Permissions

e Creating a SecureFiles File System Store

e Accessing Tables that Hold SecureFiles System Store Data
e Initializing SecureFiles Store File Systems

e Comparison of SecureFiles LOBs to BasicFiles LOBs

About Managing Permissions

ORACLE

You must use a regular database user for all operational access to the Content API
and stores.

Do not use SYS or SYSTEMusers or SYSDBA or SYSOPER system privileges. For better
security and separation of duty, only allow specific trusted users the ability to manage
DBFS Content API operations.

You must grant each user the DBFS_ROLE role. Otherwise, the user is not authorized to
use the DBFS Content API. A user with suitable administrative privileges (or SYSDBA)
can grant the role to additional users as needed.

Because of the way roles, access control, and definer and invoker rights interact in the
database, it may be necessary to explicitly grant various permissions (typically execute
permissions) on DBFS Content API types (SQL types with the DBMS_DBFS CONTENT _
xxx prefix) and packages (typically only DBMS_DBFS_CONTENT and DBMS_DBFS_SFS) to
users who might otherwise have the DBFS_RCLE role.

These explicit, direct grants are normal and to be expected, and can be provided as
needed and on demand.

21-1

Chapter 21
Setting Up a SecureFiles Store

Creating or Setting Permissions

You must grant the DBFS_RCLE role to any user that needs to use the DBFS content
APL.

1. Create or determine DBFS Content API target users.
This example uses this user and password: sf s_deno/ passwor d

At minimum, this database user must have the CREATE SESSI ON, CREATE
RESOURCE, and CREATE VI EWprivileges.

2. Grant the DBFS_ROLE role to the user.

CONNECT / as sysdba
GRANT dbfs_role TO sfs_deno;

This sets up the DBFS Content API for any database user who has the DBFS_ROLE
role.

Creating a SecureFiles File System Store

ORACLE

You must create the SecureFiles file system stores that the DBFS Content API
accesses.

The CREATEFI LESYSTEMprocedure auto-commits before and after its execution (like a
DDL). The method CREATESTORE is a wrapper around CREATEFI LESYSTEM

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for
DBMS_DBFS_SFS syntax details

To create a SecureFiles File System Store:

1. Create the necessary stores to be accessed using the DBFS Content API:

DECLARE
BEG N
DBMS_DBFS_SFS. CREATEFI LESYSTEM
store_name => 'FS1',
tbl _name => 'T1',
tbl _ths => null,
use_bf => fal se
)
COWM T,
END,
/

where:
e store_nane is any arbitrary, user-unigue name.

* thl _nane is a valid table name, created in the current schema.

21-2

ORACLE

Chapter 21
Setting Up a SecureFiles Store

e thl_tbhs is a valid tablespace name used for the store table and its dependent
segments, such as indexes, LOBs, or nested tables. The default is NULL and
specifies a tablespace of the current schema.

» use_bf specifies that BasicFiles LOBs should be used, if t r ue, or not used, if
fal se.

Register this store with the DBFS Content APl as a new store managed by the
SecureFiles Store provider.

CONNECT sfs_deno
Enter password: password

DECLARE
BEG N
DBMS_DBFS_CONTENT. REG STERSTORE(
store_nane => 'FS1',

provi der_nanme => "anything',
provi der _package => ' dbns_dbfs_sfs’
);
COWM T,
END,
/

where:
* store_nane is SecureFiles Store FS1, which uses table SFS_DEMO. T1.
e provi der_nane is ignored.

e provider_package is DBMS_DBFS_SFS, for SecureFiles Store reference
provider.

This operation associates the SecureFiles Store FS1 with the DBVMS_DBFS_SFS
provider.

Mount the store at suitable a mount-point.

CONNECT sfs_deno
Enter password: password

DECLARE
BEG N
DBMS_DBFS_CONTENT. MOUNTSTORE(
store_nane => 'FS1',
store_nount => 'mt1l'
)
COWM T,
END;
/
where:

e store_nane is SecureFiles Store FS1, which uses table SFS_DEMO. T1.
e store_nount is the mount point.

[Optional] To see the results of the preceding steps, you can use the following
statements.

* To verify SecureFiles Store tables and file systems:

SELECT * FROM TABLE(DBVS_DBFS_SFS. LI STTABLES) ;
SELECT * FROM TABLE(DBMS_DBFS_SFS. LI STFI LESYSTEMS) ;

* To verify ContentAPI Stores and mounts:

21-3

Chapter 21
Setting Up a SecureFiles Store

SELECT * FROM TABLE(DBVS_DBFS_CONTENT. LI STSTORES) ;
SELECT * FROM TABLE(DBMS_DBFS_CONTENT. LI STMOUNTS) ;

* To verify SecureFiles Store features:

var fsif nunber;
exec :fsif := dbms_dbfs_content. get Feat uresByNanme(' FS1');
select * fromtabl e(dbns_dbfs_content. decodeFeatures(:fsif));

* To verify resource and property views:

SELECT * FROM DBFS_CONTENT;
SELECT * FROM DBFS_CONTENT_PRCPERTI ES,;

Accessing Tables that Hold SecureFiles System Store Data

You should never directly access tables that hold data for a SecureFiles Store file
systems, even through the DBMS_DBFS_SFS package methods.

This is the correct way to access the file systems.

* For procedural operations: Use the DBFS Content API (DBMS_DBFS_CONTENT
methods).

* For SQL operations: Use the resource and property views (DBFS_CONTENT and
DBFS_CONTENT_PROPERTI ES).

Initializing SecureFiles Store File Systems

You can truncate and re-initialize tables associated with an SecureFiles Store.

e Use the procedure | NI TFS() .

The procedure executes like a DDL, auto-committing before and after its
execution.

The following example uses file system FS1 and table SFS_DEMO.T1, which is
associated with the SecureFiles Store st ore_nane.

CONNECT sfs_den;
Enter password: password
EXEC DBMS_DBFS_SFS. | NI TFS(store_nane => 'FS1');

Comparison of SecureFiles LOBs to BasicFiles LOBs

ORACLE

SecureFiles LOBs are only available in Oracle Database 11g Release 1 and higher.
They are not available in earlier releases.

You must use BasicFiles LOB storage for LOB storage in tablespaces that are not
managed with Automatic Segment Space Management (ASSM).

Compatibility must be at least 11.1.0.0 to use SecureFiles LOBs.
Additionally, you need to specify the following in DBMS_DBFS_SFS. CREATEFI LESYSTEM

* To use SecureFiles LOBs (the default), specify use_bf => fal se.

* To use BasicFiles LOBs, specify use_bf => true.

21-4

Chapter 21
Using a DBFS SecureFiles Store File System

Using a DBFS SecureFiles Store File System

The DBFS Content API provides methods to populate a SecureFiles Store file system
and otherwise manage it.

Topics:
e DBFS Content APl Working Example

e Dropping SecureFiles Store File Systems

DBFS Content API Working Example

You can create new file and directory elements to populate a SecureFiles Store file
system.

If you have executed the steps in "Setting Up a SecureFiles Store", set the DBFS
Content API permissions, created at least one SecureFiles Store reference file system,
and mounted it under the mount point / mt 1, then you can create a new file and
directory elements as demonstrated in Example 21-1.

Example 21-1 Working with DBFS Content API

CONNECT tj ones
Enter password: password
DECLARE
ret integer;
b blob;
str varchar2(1000) :="'" || chr(10) ||
"#include <stdio.h> || chr(10) ||
" chr(10)]
"int main(int argc, char** argv)' || chr(10) ||
{1 chr(10) [
' (void) printf("hello world\in");" || chr(10) ||
RETURN 0;' || chr(10) ||
"}l chr(10)]
BEG N

ret .= dbms_fuse.fs_nkdir('/mt1/FS1');
ret .= dbms_fuse.fs_creat('/mt1/FSl/hello.c', content => b);
dbns_| ob. writ eappend(b, length(str), utl_raw cast_to_raw(str));
COWM T;

END;

/

SHOW ERRCRS;

- verify newy created directory and file
SELECT pat hname, pathtype, length(filedata),
utl _raw. cast_to_varchar2(filedata)
FROM dbf s_cont ent
VHERE pat hnane LIKE '/ mt 1/ FS1%
ORDER BY pat hnane;

ORACLE 21-5

Chapter 21
About DBFS SecureFiles Store Package, DBMS_DBFS_SFS

The file system can be populated and accessed from PL/SQL with
DBMS_DBFS_CONTENT. The file system can be accessed read-only from SQL using the
dbfs_content and dbfs_content properties views.

The file system can also be populated and accessed using regular file system APIs
and UNIX utilities when mounted using FUSE, or by the standalone dbfs_cl i ent tool
(in environments where FUSE is either unavailable or not set up).

Dropping SecureFiles Store File Systems

You can use the unnount St or e method to drop SecureFiles Store file systems.

This method removes all stores referring to the file system from the metadata tables,
and drops the underlying file system table. The procedure executes like a DDL, auto-
committing before and after its execution.

1. Unmount the store.

CONNECT sfs_deno
Enter password: password

DECLARE
BEG N
DBMS_DBFS_CONTENT. UNMOUNTSTORE(
store_nane => 'FS1',

store_mount =>'mtl"’;

);

COWM T;
END;
/
where:
e store_nane is SecureFiles Store FS1, which uses table SFS_DEMO. T1.
e store_nount is the mount point.

2. Unregister the stores.

CONNECT sfs_deno

Enter password: password

EXEC DBMS_DBFS_CONTENT. UNREG STERSTORE(st ore_nane => 'FS1');
COWM T;

where st or e_nane is SecureFiles Store FS1, which uses table SFS_DEMO. T1.
3. Drop the file system.

CONNECT sfs_denp/ ****x*.
EXEC DBMS_DBFS_SFS. DROPFI LESYSTEM st ore_nane => 'FS1'):
COWM T;

where st ore_nane is SecureFiles Store FS1, which uses table SFS_DEMO. T1.

About DBFS SecureFiles Store Package,
DBMS DBFS_SFS

ORACLE

The DBFS SecureFiles Store package (DBMS_DBFS_SFS) is a store provider for
DBVMS_DBFS_CONTENT that supports SecureFiles LOB storage for DBFS content.

21-6

Chapter 21
Database File System (DBFS)— POSIX File Locking

To use the DBMS_DBFS_SFS package, you must be granted the DBFS_ROLE role.

The SecureFiles Store provider is a default implementation of the DBFS Content API
(and is a standard example of a store provider that conforms to the Provider SPI) that
enables applications that already use LOBs as columns in their schema, to access the
BLOB columns. This enables existing applications to easily add PL/SQL provider
implementations and provide access through the DBFS Content API without changing
their schemas or their business logic.

Applications can also read and write content that is stored in other (third party) stores
through the standard DBFS Content API interface.

In a SecureFiles Store, the underlying user data is stored in SecureFiles LOBs and
metadata such as pathnames, IDs, and properties are stored as columns in relational
tables.

¢ See Also:

e See Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_DBFS_SFS package.

e Creating Your Own DBFS Store and Oracle Database PL/SQL Packages
and Types Reference for more information about the Provider SPI
defined in DBMS_DBFS_CONTENT_SPI .

e SecureFiles LOB Storagefor advanced features of SecureFiles LOBs.

Database File System (DBFS)— POSIX File Locking

ORACLE

Starting from Oracle Database 12c¢ Release 2(12.2), Oracle supports the Database
File system PCSI X File locking feature. The DBFS provides file locking support for:

» PCSI X applications using DBFS_CLI ENT (in mount mode) as a front-end interface to
DBFS.

* Applications using PL/ SQL as an interface to DBFS.

" Note:

Oracle supports only Full-file locks in DBFS. Full-file lock implies locking the
entire file from byte zero offset to the end of file.

Topics:

e About Advisory Locking

e About Mandatory Locking

e File Locking Support

e Compatibility and Migration Factors of Database Filesystem—File Locking

e Examples of Database Filesystem—File Locking

21-7

Chapter 21
Database File System (DBFS)— POSIX File Locking

About Advisory Locking

Advisory locking is a file locking mechanism that locks the file for a single process.

File locking mechanism cannot independently enforce any form of locking and requires
support from the participating processes. For example, if a process PL hasawrite
lock on file F1, the locking API or the operating system does not perform any action to
prevent any other process P2 from issuing a read or wri t e system call on the file F1.
This behavior of file locking mechanism is also applicable to other file system
operations. The processes that are involved (in file locking mechanism) must follow a
lock or unlock protocol provided in a suitable API form by the user-level library. File
locking semantics are guaranteed to work provided, the processes incorporate the
recommended usage of the locking protocol and respect the results of API calls.

About Mandatory Locking

Mandatory locking is a file locking mechanism that takes support from participating
processes.

Mandatory locking is an enforced locking scheme that does not rely on the
participating processes to cooperate and/or follow the locking API. For example, if a
process P1 has taken awri t e lock on file F1 and if a different process P2 attempts to
issue aread/wite system call (or any other file system operation) on file F1 , the
request is blocked because the concerned file is exclusively locked by process P1.

File Locking Support

ORACLE

Enabling the file locking mechanism helps applications to block files for various file
system operations.

The fentl (), I ockf (), and fl ock() system calls in UNI X and LI NUX provide file locking
support. These system calls enable applications to use the file locking facility through
dbf s_cl i ent - FUSE callback interface. File Locks provided by fcnt| () are widely
known as POSIX file locks and the file locks provided by f | ock() are known as BSD
file locks. The semantics and behavior of POSIX and BSD file locks differ from each
other. The locks placed on the same file through fcnt1 () and fl ock() are orthogonal
to each other. The semantics of file locking functionality designed and implemented in
DBFS is similar to POSIX file locks. In DBFS, semantics of file locks placed through

fl ock() system call will be similar to POSIX file locks (such as fcntl ()) and not BSD
file locks. | ockf () is a library call that is implemented as a wrapper over fcnt | ()
system call on most of the UNIX systems, and hence, it provides POSIX file locking
semantics. In DBFS, file locks placed through fcnt 1 (), fl ock(), and | ockf () system-
calls provide same kind of behavior and semantics of POSIX file locks.

¢ Note:

BSD file locking semantics are not supported.

21-8

Chapter 21
Database File System (DBFS)— POSIX File Locking

Compatibility and Migration Factors of Database Filesystem—File

Locking

The Database Filesystem File Locking feature does not impact the compatibility of
DBFS and SFS store provider with RDBVS.

DBFS_CLI ENT is a standalone OCI Client and uses OCl calls and DBMS_FUSE API .

< Note:

This feature will be compatible with Or aSDK/ RSF .

Examples of Database Filesystem—File Locking

ORACLE

The following examples illustrate the advisory locking and the locking functions
available on UNI X based systems. The following example uses two running processes
— Process A and Process B.

Example 21-2 No locking

Process A opens file:

file_desc = open(“/path/to/file”, O RDONLY);
/* Reads data into bufffers */

read(fd, bufl, sizeof(buf));

read(fd, buf2, sizeof(buf));
close(file_desc);

Subjected to OS scheduling, process B can enter any time and issue aw it e system
call affecting the integrity of file data.

Example 21-3 Advisory locking used but process B does not follow the
protocol

Process A opens file:
file_desc = open(“/path/to/file”, O RDONLY);

ret = AcquireLock(file desc, RD LOCK);
if(ret)

{
read(fd, bufl, sizeof(buf));
read(fd, buf2, sizeof(buf));
Rel easeLock(file_desc);

}

close(file_desc);

Subjected to OS scheduling, process B can come in any time and still issue awrite
system call ignoring that process A already holds a r ead lock.

21-9

Chapter 21
Database File System (DBFS)— POSIX File Locking

Process B opens file:

file_descl = open(“/path/to/file”, O WRONLY);
wite(file_descl, buf, sizeof(buf));
close(file_descl);

The above code is executed and leads to inconsistent data in the file.
Example 21-4 Advisory locking used and processes are following the protocol

Process A opens file:

file_ desc = open(“/path/to/file”, O RDONLY);
ret = AcquireLock(file desc, RD LOCK);
if(ret)
{

read(fd, bufl, sizeof(buf));

read(fd, buf2, sizeof(buf));

Rel easelLock(file_desc);

close(file_desc);

Process B opens file:

file descl = open(“/path/to/file”, O WRONLY);
ret = AcquireLock(file descl, WR LOCK);
[* The above call will take care of checking the existence of a lock */
if(ret)
{
wite(file_descl, buf, sizeof(buf));
Rel easelLock(file _descl);
} close(file_descl);

Process B follows the lock API and this APl makes sure that the process does not
wri t e to the file without acquiring a lock.

File Locking Behavior

ORACLE

The DBFS File Locking feature exhibits the following behaviors:

* File locks in DBFS are implemented with idempotent functions. If a process issues
“N”read or wite lock calls on the same file, only the first call will have an effect,
and the subsequent “N-1" calls will be treated as redundant and returns No
Operation (NOOP).

» File can be unlocked exactly once. If a process issues “N” unl ock calls on the
same file, only the first call will have an effect, and the subsequent “N-1" calls will
be treated as redundant and returns NOOP.

e Lock conversion is supported only from read to wri t e. If a process P holds a r ead
lock on file F (and P is the only process holding the r ead lock), then awr i t e lock
request by P on file F will convert the r ead lock to excl usi ve/wri t e lock.

21-10

Chapter 21
Database File System (DBFS)— POSIX File Locking

Scheduling File Locks

DBFS File Locking feature supports lock scheduling. This facility is implemented
purely on the DBFS client side. Lock request scheduling is required when client
application uses blocking call semantics in their fcnt| (), | ockf (), and fl ock() calls.

There are two types of scheduling:

* Greedy Scheduling
e Fair Scheduling

Oracle provides the following command line option to switch the scheduling behavior.

Mount -0 | ock_sched_option = | ock_sched_option Val ue;

Table 21-1 | ock_sched_opti on Value Description
|

Value Description
1 Sets the scheduling type to Greedy Scheduling. (Default)
2 Sets the scheduling type to Fair Scheduling.

" Note:

Lock Request Scheduling works only on per DBFS Client mount basis. For
example, lock requests are not scheduled across multiple mounts of the
same file system.

Greedy Scheduling

ORACLE

In this scheduling technique, the file lock requests does not follow any guaranteed
order.

Note:
This is the default scheduling option provided by DBFS Client.

If a file F is r ead locked by process P1, and if processes P2 and P3 submit blocking

writ e lock requests on file F, the processes P2 and P3 will be blocked (using a form of
spin lock) and made to wait for its turn to acquire the lock. During the wait, if a process
P4 submits a r ead lock request (blocking call or a non-blocking call) on file F, P4 will be
granted the r ead lock even if there are two processes (P2 and P3) waiting to acquire
the wri t e lock. Once both P1 and P4 release their respective r ead locks, one of P2 and
P3 will succeed in acquiring the lock. But, the order in which processes P2 and P3
acquire the lock is not determined. It is possible that process P2 would have requested
first, but the process P3’s request might get unblocked and acquire the lock and the
process P2 must wait for P3 to release the lock.

21-11

Chapter 21
Database File System (DBFS)— POSIX File Locking

Fair Scheduling

ORACLE

This scheduling technique is implemented using a queuing mechanism on per file
basis. For example, if a file F is read locked by process P1, and processes P2 and P3
submit blocking write lock requests on file F, these two processes will be blocked
(using a form of spin lock) and will wait to acquire the lock. The requests will be
gueued in the order received by the DBFS client. If a process P4 submits a read lock
request (blocking call or a non-blocking call) on file F, this request will be queued even
though a read lock can be granted to this process.

DBFS Client ensures that after P1 releases its read lock, the order in which lock
requests are honored is P2->P3 -> P4.

This implies that P2 will be the first one to get the lock. Once P2 releases its lock, P3
will get the lock and so on.

21-12

DBFS Hierarchical Store

The DBFS Hierarchical Store and related store wallet management work together to
store less frequently used data.

Topics:

* About the Hierarchical Store Package_ DBMS_DBFS_HS
* Ways to Use DBFS Hierarchial Store

e Setting up the Store

e Using the Hierarchical Store

* Database File System Links

e The DBMS_DBFS_HS Package

* Views for DBFS Hierarchical Store

About the Hierarchical Store Package, DBMS DBFS_HS

The Oracle DBFS Hierarchical Store package (DBMS_DBFS_HS) is a store provider for
DBMS_DBFS_CONTENT that supports hierarchical storage for DBFS content.

The package stores content in two external storage devices: tape and the Amazon S3
web service, and associated metadata (or properties) in the database. The DBFS HS
may cache frequently accessed content in database tables to improve performance.

Ways to Use DBFS Hierarchial Store

ORACLE

The DBM5_DBFS HS package must be used in conjunction with the DBMS_DBFS CONTENT
package to manage Hierarchical Storage Management for SecureFiles LOBs using
DBFS Links.

Using this package, data that is less frequently used can be migrated to a cheaper
external device such as tape, achieving significant reduction in storage costs.

The DBMS_DBFS_HS package can also be plugged into the DBVS_DBFS_CONTENT
package, as a store provider, to implement a tape file system, if the associated
external storage device is tape, or a cloud file system, if the associated external
storage device is the Amazon S3 storage service.

The DBM5_DBFS_HS package provides you the ability to use tape as a storage tier when
implementing Information Lifecycle Management (ILM) for database tables or content.
The package also supports other forms of storage targets including Web Services like
Amazon S3. This service enables users to store data in the database on tape and
other forms of storage. The data on tape or Amazon S3 is part of the Oracle Database
and all standard APIs can access it, but only through the database.

DBMS_DBFS_HS has additional interfaces needed to manage the external storage device
and the cache associated with each store.

22-1

Chapter 22
Setting up the Store

To use the package DBM5_DBFS_HS, you must be granted the DBFS_RCLE role.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference, for details of the
DBMS_DBFS_HS Package

Setting up the Store

You manage a Hierarchical Store wallet and set up, register, and mount a hierarchical
Store.

Topics:
* Managing a HS Store Wallet

* Creating_ Registering_ and Mounting the Store

Managing a HS Store Wallet

Use the command-line utility nkst or e to create and manage wallets.
Use the following commands to create wallets:
* Create a wallet
nmkstore -w|l wallet |ocation -create
e Add a KEY alias

Specify the access_key and secr et _key aliases by enclosing them within single
quotes.

mkstore -wrl wallet_location -createCredential alias 'access_key' 'secret_key'

For example:
mkstore -wrl /home/userl/mywal | et -createCredential nykey 'abc' 'xyz'
* Delete a KEY alias

nmkstore -wl wall et _|ocation -deleteCredential alias

For example:

mkstore -wrl /home/userl/mywal | et -del eteCredential nykey

¢ See Also:

e Oracle Database Advanced Security Guide for more about creation and
management of wallets

ORACLE 22-2

Chapter 22
Using the Hierarchical Store

Creating, Registering, and Mounting the Store

Setting up a hierarchical file system store requires creating, registering, and mounting
the store.

Creating, registering, and mounting the store.

1.

CallcreateStore.

DBMS_DBFS_HS. createStore(store_nane, store_type, thl_nanme, tbs_nane,
cache_si ze, | ob_cache_quota, optimal _tarball _size, schema_nane);

Set mandatory and optional properties using the following interface:

DBMS_DBFS_HS. set St or eProperty(St oreNane, PropertyNanme, PropertyVal ue);

For st ore_t ype = STORETYPE_TAPE, mandatory properties are:
PROPNAME_DEVI CELI BRARY, PROPNAME_MEDI APCCOL, PROPNAME_CACHESI ZE.

PROPNAME_CACHESI ZE is al ready set by createStore.

You can change the value of PROPNAME_CACHESI ZE using r econfi gCache.
Optional properties are:

PROPNAME_OPTTARBALLSI ZE, PROPNAME_READCHUNKSI ZE, PROPNAVE_VRI TECHUNKSI ZE,
PROPNAME_STREAMABLE.

For st ore_t ype = STORETYPE_AMAZONS3 mandatory properties are:

PROPNAME_DEVI CELI BRARY, PROPNAVE_CACHESI ZE, PROPNAME_S3HOST, PROPNAVE_BUCKET,
PROPNAME_LI CENSEI D, PROPNAME_WALLET.

PROPNAMVE_CACHESI ZE is set by cr eat eSt or e. You can change the value of
PROPNAME_CACHESI ZE using r econf i gCache.
Optional properties are:

PROPNAME_OPTTARBALLSI ZE, PROPNAME_READCHUNKSI ZE, PROPNAVE_VRI TECHUNKSI ZE,
PROPNAME_STREAMABLE, PROPNAVE_HTTPPROXY.

Register the store with DBFS Content API using:
DBMS_DBFS_CONTENT. r egi st er St or e(st ore_name, provider_nane, provider_package);

Note: provi der _package is the dbns_dbf s_hs package.
Mount the stores for access using:

DBMS_DBFS_CONTENT. nount St or e(st ore_name, store_nount, singleton, principal,
owner, acl, asof, read_only);

Using the Hierarchical Store

The Hierarchical Store can be used as an independent file system or as an archive
solution for SecureFiles LOBs.

ORACLE

Topics:

Using Hierarchical Store as a File System

22-3

Chapter 22
Using the Hierarchical Store

» Using Hierarchical Store as an Archive Solution For SecureFiles LOBs
* Dropping a Hierarchical Store

e Compression to Use with the Hierarchical Store

* Program Example Using Tape

* Program Example Using Amazon S3

Using Hierarchical Store as a File System

Use the DBMS_DBFS_CONTENT package to create, update, read, and delete file system
entries in the store.

¢ See Also:
DBFS Content API

Using Hierarchical Store as an Archive Solution For SecureFiles LOBs

Use the DBMS_LOB package to archive SecureFiles LOBs in a tape or S3 store.

The DBM5_LOB package archives SecureFiles LOBs in a tape or S3 store, as described
in "PL/SQL Packages for LOBs and DBFS".

To free space in the cache or to force cache resident contents to be written to external
storage device, call:

DBMS_DBFS_HS. st or ePush(st ore_nane);

Dropping a Hierarchical Store

You can drop a hierarchical store.
To drop a hierarchical store, call:

DBMS_DBFS_HS. dr opSt ore(st ore_name, opt_flags);

Compression to Use with the Hierarchical Store

The DBFS hierarchical store can store its files in compressed forms.

The DBFS hierarchical store has the ability to store its files in compressed form using
the SETPROPERTY method and the property PROPNAME COVPRESSLVL to specify the
compression level.

Valid values are:

° PROPVAL_COWPLVL_NONE: No compression

e PROPVAL_COWPLVL_LOW LOWNcompression

e PROPVAL_COWPLVL_MEDI UM MEDI UMcompression
e PROPVAL_COWPLVL_HI GH: H GH compression

ORACLE 22-4

Chapter 22
Using the Hierarchical Store

Generally, the compression level LONperforms best and still provides a good
compression ratio. Compression levels MEDI UMand HI GH provide significantly better
compression ratios, but compression times can be correspondingly longer. Oracle
recommends using NONE or LONwhen write performance is critical, such as when files
in the DBFS HS store are updated frequently. If space is critical and the best possible
compression ratio is desired, use MEDI UMor HI GH.

Files are compressed as they are paged out of the cache into the staging area (before
they are subsequently pushed into the back end tape or S3 storage). Therefore,
compression also benefits by storing smaller files in the staging area and effectively
increasing the total available capacity of the staging area.

Program Example Using Tape

ORACLE

This example program configures and uses a tape store.

In the example, you must substitute valid values in some places, as indicated by <...>,
for the program to run successfully.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference DBVMS_DBFS_HS
documentation for complete details about the methods and their parameters

Rem Exanpl e to configure and use a Tape store.

Rem

Rem hsuser shoul d be a valid database user who has been granted
Remthe role dbfs_role.

connect hsuser/hsuser

Rem The fol | owi ng bl ock sets up a STORETYPE_TAPE store with
Rem DBMS_DBFS_HS acting as the store provider.

decl are

storename varchar2(32) ;

t bl name varchar2(30) ;

tbsname varchar2(30) ;

| ob_cache_quota nunber := 0.8 ;
cachesz nunber ;

ots nunber ;

begin

cachesz := 50 * 1048576 ;

ots := 1048576 ;

storename : = 'tapestorelQ' ;
tbl name := 'tapetbl 10" ;
tbsname := '<TBS 3> ; -- Substitute a valid tabl espace name

- Create the store.

- Here tbsname is the tabl espace used for the store,

- tbhiname is the table holding all the store entities,

- cachesz is the space used by the store to cache content
in the tabl espace,

- lob_cache_quota is the fraction of cachesz allocated
to level -1 cache and

- ots is mnimmanount of content that is accunul ated

22-5

ORACLE

in level-2 cache before being stored on tape
dbns_dbfs_hs. creat eSt or e(
st orenane,
dbrs_dbf s_hs. STORETYPE_TAPE,
tbl nane, tbsnane, cachesz,
| ob_cache_quota, ots) ;

dbns_dbf s_hs. set st or eproperty(
st or enane,
dbrs_dbf s_hs. PROPNAME_SBTLI BRARY,
' <ORACLE_HOWE/ wor k/ | i bobkuni g. so>") ;
- Substitute your ORACLE_HOME path

dbns_dbfs_hs. set st oreproperty(

st orenane,
dbns_dbf s_hs. PROPNAVE_MEDI APQQL,
'<0>') ; -- Substitute valid value

dbns_dbf s_hs. set st or eproperty(
stor enane,
dbns_dbf s_hs. PROPNAME_COMPRESSLEVEL,
'NOE')

- Please refer to DBMS_DBFS_CONTENT docunentation
- for details about this method
dbns_dbfs_content. regi sterstore(

st orenane,

"tapeprvder 10",

"dbns_dbfs_hs') ;

- Please refer to DBMS_DBFS_CONTENT docunentation
- for details about this method

dbns_dbfs_cont ent. nount st ore(storenane, 'tapemt10') ;

end ;
/

Rem The fol | owi ng code bl ock does file operations
Rem usi ng DBVS_DBFS_CONTENT on the store configured
Remin the previous code bl ock

connect hsuser/hsuser

declare
path varchar2(256) ;
pat h_pre varchar2(256) ;
mount _poi nt varchar2(32) ;
store_name varchar2(32) ;
propl dbns_dbfs_content _properties_t ;
prop2 dbns_dbfs_content _properties_t ;
mycontent blob := enpty_blob() ;
buf fer varchar2(1050) ;
rawbuf raw(1050) ;
outcontent blob := enpty_blob() ;
itentype integer ;
pflag integer ;
filecnt integer ;
iter integer ;
of fset integer ;
raw en integer ;
begin

Chapter 22
Using the Hierarchical Store

22-6

ORACLE

Chapter 22
Using the Hierarchical Store

mount _point :="'/tapemt10' ;
store_name := 'tapestorelQ' ;
path_pre := mount_point ||'/file" ;

-- W create 10 enpty files in the following |oop
filecnt := 0 ;
| oop
exit when filecnt = 10 ;
path := path_pre || to_char(filecnt) ;
mycontent := enpty_blob() ;
propl := null ;

-- Please refer to DBVMS_DBFS_CONTENT documentation
-- for details about this nethod
dbns_dbfs_content. createFil e(

path, propl, nycontent) ; -- Create the file
comit ;
filecnt :=filecnt + 1 ;
end | oop ;

-- % popul ate the newy created files with content

-- in the following |oop

pflag := dbns_dbfs_content.prop_data +
dbns_dbfs_content. prop_std +
dbns_dbfs_content. prop_opt ;

buffer := "Oracle provides an integrated nanagement '
"solution for managing Oracle database with '
"a uni que top-down application managenent ' |
"approach. Wth new sel f-managi ng ' |
"capabilities, Oracle elimnates time-' |
‘consuning, error-prone administrative ' |
"tasks, so database admnistrators can ' |
I
I
I
I

"focus on strategic business objectives '
"instead of performance and availability '
"fire drills. Oacle Minagenent Packs for '

' Dat abase provide signifiCant cost and tine-'
"saving capabilities for managing Oracle '

' Dat abases. |ndependent studies denmonstrate '
"that Oracle Database is 40 percent easier '
"to manage over DB2 and 38 percent over '

"SQ Server.';
rawobuf := utl_rawcast_to_rawbuffer) ;
rawl en := utl_raw. | ength(rawbuf) ;
offset :=1;
filecnt :=0 ;
| oop

exit when filecnt = 10 ;
path := path_pre || to_char(filecnt) ;
propl := null;

-- Append buffer to file
-- Please refer to DBVMS_DBFS_CONTENT documentation
-- for details about this method
dbns_dbf s_cont ent . put pat h(
path, propl, raw en,
of fset, rawbuf) ;

22-7

ORACLE

comit ;

filecnt :=filecnt + 1 ;

end | oop ;

-- Cear out |

evel 1 cache

dbns_dbfs_hs. fl ushCache(store_nane) ;

commt ;

-- Do write operation on even-nunbered files.
-- Do read operation on odd-nunbered files.

filecnt := 0 ;
| oop
exit when fi

path := path_pre ||

| ecnt 10;
t

o_char(filecnt) ;

if mod(filecnt, 2) =0 then

-- CGet wi
-- Please

table file
refer to DBVS_DBFS_CONTENT docunentation

-- for details about this nethod

dbns_dbfs_

content . get Pat h(

path, prop2, outcontent, itentype,
pflag, null, true) ;

buffer :=

rawbuf :
raw en :

-- Mdify
-- Please

" Agil e businesses want to be able to ' |
"qui ckly adopt new technol ogi es, whether '|]|
'operating systens, servers, or ' |
"software, to help themstay ahead of ' |
"the conpetition. However, change often ' ||
"introduces a period of instability into '|]
"mssion-critical IT systems. Oracle ' |
"Real Application Testing-with Oracle ' |
' Dat abase 11g Enterprise Edition-allows ' ||
" busi nesses to quickly adopt new' |
"technol ogi es while elininating the ' |
"risks associated with change. Oracle ' |
"Real Application Testing conbines a ' |
"workl oad capture and replay feature ' |
"with an SQ. perfornmance anal yzer to ' |
"hel p you test changes against real-life '|]|
"workl oads, and then hel ps you fine-tune '||
"the changes before putting theminto' |
"production. Oracle Real Application' |
" Testing supports ol der versions of ' |
"Oracl e Database, so custonmers running ' ||
"Oracl e Database 9i and Oracl e Database ' ||
'10g can use it to accelerate their ' |
' dat abase upgrades. ';

utl raw cast_to_raw buffer) ;
utl _raw. | engt h(rawbuf) ;

file content
refer to DBVS_DBFS_CONTENT docunentation

-- for details about this nethod
dbns_l ob. write(outcontent, raw en, 10, rawbuf);

commt ;
el se

-- Read the file

-- Please

refer to DBVS_DBFS_CONTENT docunentation

-- for details about this nethod

dbns_dbfs_

content . get Pat h(

path, prop2, outcontent, itentype, pflag) ;

Chapter 22
Using the Hierarchical Store

22-8

Chapter 22
Using the Hierarchical Store

end if ;
filecnt :=filecnt + 1 ;
end | oop ;

- Delete the first 2 files
filecnt := 0;

| oop
exit when filecnt = 2 ;
path := path_pre || to_char(filecnt) ;
- Delete file
- Please refer to DBMS_DBFS_CONTENT docunentation
- for details about this method
dbns_dbfs_content. del eteFi | e(path) ;
comit ;
filecnt :=filecnt + 1 ;
end | oop ;

- Move content staged in database to the tape store
dbns_dbf s_hs. st or ePush(store_nane) ;
comit ;

end ;

/

Program Example Using Amazon S3

ORACLE

This example program configures and uses an Amazon S3 store.

Valid values must be substituted in some places, indicated by <...>, for the program to
run successfully.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference DBVMS_DBFS_HS
documentation for complete details about the methods and their parameters

Rem Exanpl e to configure and use an Amazon S3 store.

Rem

Rem hsuser should be a valid database user who has been granted
Remthe role dbfs_role.

connect hsuser/hsuser

Rem The following block sets up a STORETYPE_AMAZONS3 store with
Rem DBMS_DBFS_HS acting as the store provider.

decl are

storename varchar2(32) ;

t bl name varchar2(30) ;

t bsnanme varchar2(30) ;

| ob_cache_quota nunber := 0.8 ;
cachesz nunber ;

ots nunber ;

begin

cachesz := 50 * 1048576 ;

22-9

ORACLE

Chapter 22
Using the Hierarchical Store

ots := 1048576 ;

storename : = 's3storell
tbl name := "s3thl 10'
tbsname := '<TBS 3>' ; -- Substitute a valid tabl espace name

- Create the store.
- Here thsname is the tabl espace used for the store,
- thiname is the table holding all the store entities,
- cachesz is the space used by the store to cache content
in the tabl espace,
- lob_cache_quota is the fraction of cachesz allocated
to level -1 cache and
- ots is mninumanount of content that is accunul ated
in level-2 cache before being stored in AmazonS3
dbns_dbfs_hs. creat eSt or e(
st orenane,
dbns_dbf s_hs. STORETYPE_AMAZONS3,
tbl nane, tbsnane, cachesz,
| ob_cache_quota, ots) ;

dbns_dbfs_hs. set st or eproperty(storenane,
dbrs_dbf s_hs. PROPNAME_SBTLI BRARY,
' <ORACLE_HOVE/ wor k/ | i bosbws11. s0>');
- Substitute your ORACLE_HOME path

dbns_dbfs_hs. set st oreproperty(
st orenane,
dbns_dbf s_hs. PROPNAME_S3HOST,
' s3. amazonaws. com) ;

dbns_dbfs_hs. set st oreproperty(
st orenane,
dbns_dbf s_hs. PROPNAME_BUCKET,
" oras3bucket 10') ;

dbns_dbf s_hs. set st or eproperty(
st or enane,
dbns_dbf s_hs. PROPNAME_WALLET,
* LOCATI ON=f i | e <ORACLE_HOVE>/ wor k/ wi t CREDENTI AL_ALI AS=a_key') ;
- Substitute your ORACLE_HOME path

dbns_dbfs_hs. set st oreproperty(

st or enane,
dbns_dbf s_hs. PROPNAVE LI CENSEI D,
" XXXXXXXXXXXXXXXX>') ; -- Substitute a valid SBT license id

dbns_dbfs_hs. set st oreproperty(
st orenane,
dbns_dbf s_hs. PROPNAVE_HTTPPROXY,
" <http://ww proxy. nyconpany. com 80/ >') ;
- Substitute valid value. If a proxy is not used,
- then this property need not be set.

dbns_dbfs_hs. set st oreproperty(
st orenane,
dbns_dbf s_hs. PROPNAME_COMPRESSLEVEL,
"NONE')

dbns_dbf s_hs. creat ebucket (st orename) ;

- Please refer to DBMS_DBFS_CONTENT docunentation

22-10

Chapter 22
Using the Hierarchical Store

- for details about this method
dbns_dbfs_content. regi sterstore(
st orenane,
' s3prvder10',
"dbns_dbfs_hs') ;

- Please refer to DBMS_DBFS_CONTENT docunentation
- for details about this method
dbns_dbfs_cont ent . mount st or e(
st orenane,
's3mt 10') ;
end ;
/

Rem The fol | owi ng code bl ock does file operations
Rem usi ng DBMS_DBFS_CONTENT on the store configured
Remin the previous code bl ock

connect hsuser/hsuser

decl are

path varchar2(256) ;

path_pre varchar2(256) ;

mount _poi nt varchar2(32) ;

store_nane varchar2(32) ;

propl dbns_dbfs_content _properties_t ;
prop2 dbns_dbfs_content _properties_t ;
mycontent blob := enpty_blob() ;

buf fer varchar2(1050) ;

rawbuf raw(1050) ;

outcontent blob := enpty_blob() ;
itentype integer ;

pflag integer ;

filecnt integer ;

iter integer ;

of fset integer ;

raw en integer ;

begin
mount _point :="'/s3mt10'
store_name := 's3storell

path_pre := nmount_point ||'/file'

- W create 10 enpty files in the followi ng | oop
filecnt := 0 ;
| oop
exit when filecnt = 10 ;
path := path_pre || to_char(filecnt) ;
mycontent := enpty_blob() ;
propl := null ;

- Please refer to DBMS_DBFS_CONTENT docunentation
- for details about this method
dbns_dbfs_content. createFil e(

path, propl, nycontent) ; -- Create the file
comit ;
filecnt :=filecnt + 1 ;
end | oop ;

- Ve popul ate the newly created files with content

ORACLE 22-11

ORACLE

in the following |oop

pflag := dbns_dbfs_content.prop_data +

dbns_dbfs_content. prop_std +
dbns_dbfs_content. prop_opt ;

buffer := "Oracle provides an integrated nanagement '

"solution for managing Oracle database with '
"a uni que top-down application managenent '
"approach. Wth new sel f-managi ng '
"capabilities, Oracle elimnates time-'
‘consuning, error-prone administrative '
"tasks, so database adninistrators can '
"focus on strategic business objectives '
"instead of performance and availability '
"fire drills. Oacle Managenent Packs for '

' Dat abase provide signifiCant cost and tine-'
"saving capabilities for managing Oracle '

' Dat abases. |ndependent studies denmonstrate '
"that Oracle Database is 40 percent easier '
"to manage over DB2 and 38 percent over '

"SQ Server.';
rawbuf := utl_rawcast_to_rawbuffer) ;
rawl en := utl_raw. | ength(rawbuf) ;
offset :=1;

filecnt :=0 ;
| oop

exit when filecnt = 10 ;
path := path_pre || to_char(filecnt) ;
propl := null;

-- Append buffer to file
-- Please refer to DBVMS_DBFS_CONTENT documentation
-- for details about this nethod
dbns_dbf s_cont ent . put pat h(
path, propl, raw en,
of fset, rawbuf) ;

comit ;
filecnt :=filecnt + 1 ;

end | oop ;

Cear out level 1 cache

dbns_dbfs_hs. fl ushCache(store_nane) ;
comit ;

Do wite operation on even-nunbered files.
Do read operation on odd-nunbered files.

filecnt :=0 ;
| oop

exit when filecnt = 10;
path := path_pre || to_char(filecnt) ;
if mod(filecnt, 2) =0 then
-- Get witable file
-- Please refer to DBVS_DBFS_CONTENT docunentation
-- for details about this method
dbms_dbf s_cont ent . get Pat h(
path, prop2, outcontent, itentype,
pflag, null, true) ;

buffer := "Agile businesses want to be able to '

Chapter 22
Using the Hierarchical Store

22-12

ORACLE

"qui ckly adopt new technol ogi es, whether '
‘operating systems, servers, or '
"software, to help themstay ahead of '
"the conpetition. However, change often '
"introduces a period of instability into'
"mssion-critical IT systems. Oracle '
"Real Application Testing-with Oracle '

' Dat abase 11g Enterprise Edition-allows '
"busi nesses to quickly adopt new'
"technol ogi es while elininating the '
"risks associated with change. Oracle '
"Real Application Testing conbines a '
"workl oad capture and replay feature '
"with an SQL performance anal yzer to '
"hel p you test changes against real-life'
"wor kl oads, and then hel ps you fine-tune '
"the changes before putting theminto'
"production. Oracle Real Application'
"Testing supports ol der versions of '
"Oracl e Database, so customers running '
"Oracl e Database 9i and Oracl e Database '
"10g can use it to accelerate their '

' dat abase upgrades. ';

rawbuf :
raw en :

utl raw. cast_to_raw buffer) ;
utl _raw. | engt h(rawbuf) ;

-- Mdify file content
-- Please refer to DBVS_DBFS_CONTENT docunentation
-- for details about this nethod
dbns_l ob. write(outcontent, raw en, 10, rawbuf);
comit ;

el se
-- Read the file
-- Please refer to DBVS_DBFS_CONTENT docunentation
-- for details about this nethod
dbms_dbf s_cont ent . get Pat h(

path, prop2, outcontent, itentype, pflag) ;
end if ;
filecnt :=filecnt + 1 ;
end | oop ;

-- Delete the first 2 files
filecnt := 0;

| oop
exit when filecnt = 2 ;
path := path_pre || to_char(filecnt) ;
-- Delete file
-- Please refer to DBVMS_DBFS_CONTENT documentation
-- for details about this nethod
dbns_dbfs_content. del eteFi | e(path) ;
comit ;
filecnt :=filecnt + 1 ;
end | oop ;

-- Mve content staged in database to Amazon S3 store
dbns_dbf s_hs. st or ePush(store_nane) ;
comit ;

Chapter 22
Using the Hierarchical Store

22-13

Chapter 22
Database File System Links

end ;

Database File System Links

Database File System Links allow for storing SecureFiles LOBs in a different location
than usual.

Topics:

e About Database File System Links

e Ways to Create Database File System Links
e Database File System Links Copy

e Copying a Linked LOB Between Tables

* Online Redefinition and DBFS Links

e Transparent Read

About Database File System Links

ORACLE

DBFS Links allows storing SecureFiles LOBs transparently in a location separate from
the segment where the LOB is normally stored. Instead, you store a link to the LOB in
the segment.

The link in the segment must reference a path that uses DBFS to locate the LOB when
accessed. This means that the LOB could be stored on another file system, on a tape
system, in the cloud, or any other location that can be accessed using DBFS.

When a user or application tries to access a SecureFiles LOB that has been stored
outside the segment using a DBFS Link, the behavior can vary depending on the
attempted operation and the characteristics of the DBFS store that holds the LOB:

e Read:

If the LOB is not already cached in a local area in the database, then it can be
read directly from the DBFS content store that holds it, if the content store allows
streaming access based on the setting of the PROPNAMVE_STREAMABLE parameter. If
the content store does not allow streaming access, then the entire LOB will first be
read into a local area in the database, where it will be stored for a period of time
for future access.

Write:

If the LOB is not already cached in a local area in the database, then it will first be
read into the database, modified as needed, and then written back to the DBFS
content store defined in the DBFS Link for the LOB in question.

* Delete:

When a SecureFiles LOB that is stored through a DBFS Link is deleted, the DBFS
Link is deleted from the table, but the LOB itself is NOT deleted from the DBFS
content store. Or it is more complex, based on the characteristics/settings, of the
DBFS content store in question.

DBFS Links enable the use of SecureFiles LOBs to implement Hierarchical Storage
Management (HSM) in conjunction with the DBFS Hierarchical Store (DBFS HS). HSM

22-14

Chapter 22
Database File System Links

is a process by which the database moves rarely used or unused data from faster,
more expensive, and smaller storage to slower, cheaper, and higher capacity storage

Figure 22-1 Database File System Link

SecureFiles LOB column

[

DBFS Link

/table1/lob1
v

Content
API

/table1 I
— 1
< Cloud
R 0

\

|

\

|

\

|

\

~
~

| DLl L)L

Ways to Create Database File System Links

Database File System Links require the creation of a Database File System through
the use of the DBFS Content package, DBVMS_DBFS_CONTENT

Oracle provides several methods for creating a DBFS Link

Move SecureFiles LOB data into a specified DBFS pathname and store the
reference to the new location in the LOB

Call DBMS_LOB. MOVE_TO DBFS_LI NK() with LOB and DBFS path name arguments,

and the system creates the specified DBFS HSM Store if it does not exist, copies

data from the SecureFiles LOB into the specified DBFS HSM Store, removes data
from the SecureFiles LOB, and stores the file path name for subsequent access
through this LOB.

Copy or create a reference to an existing file

ORACLE

22-15

Chapter 22
Database File System Links

Call DBMS_LOB. COPY_DBFS LI NK() to copy a link from an existing DBFS Link. If
there is any data in the destination SecureFiles LOB, the system removes this
data and stores a copy of the reference to the link in the destination SecureFiles
LOB.

« Call DBVS_LOB. SET_DBFS_LI NK(), which assumes that the data for the link is stored
in the specified DBFS path name.

The system removes data in the specified SecureFiles LOB and stores the link to
the DBFS path name.

Creating a DBFS Link impacts which operations may be performed and how. Any
DBMS_LOB operations that modify the contents of a LOB will throw an exception if the
underlying LOB has been moved into a DBFS Link. The application must explicitly
replace the DBFS Link with a LOB by calling DBMS_LOB. COPY_FROM LI NK() before
making these calls.

When it is completed, the application can move the updated LOB back to DBFS using
DBVS_LOB. MOVE_TO DBFS LI NK(), if needed. Other DBMS_LOB operations that existed
before Oracle Database 11g Release 2 work transparently if the DBFS Link is in a file
system that supports streaming. Note that these operations fail if streaming is either
not supported or disabled.

If the DBFS Link file is modified through DBFS interfaces directly, the change is
reflected in subsequent reads of the SecureFiles LOB. If the file is deleted through
DBFS interfaces, then an exception occurs on subsequent reads.

For the database, it is also possible that a DBA may not want to store all of the data
stored in a SecureFiles LOB HSM during export and import. Oracle has the ability to
export and import only the Database File System Links. The links are fully qualified
identifiers that provide access to the stored data, when entered into a SecureFiles
LOB or registered on a SecureFiles LOB in a different database. This ability to export
and import a link is similar to the common file system functionality of symbolic links.

The newly imported link is only available as long as the source, the stored data, is
available, or until the first retrieval occurs on the imported system. The application is
responsible for stored data retention. If the application system removes data from the
store that still has a reference to it, the database throws an exception when the
referencing SecureFiles LOB(s) attempt to access the data. Oracle also supports
continuing to keep the data in the database after migration out to a DBFS store as a
cached copy. It is up to the application to purge these copies in compliance with its
retention policies.

Database File System Links Copy

ORACLE

The API DBVS_LOB. COPY_DBFS LI NK(DSTLOB, SRCLOB, FLAGS) provides the ability to
copy a linked SecureFiles LOB.

sBy default, the LOB is not obtained from the DBFS HSM Store during this operation;
this is a copy-by-reference operation that exports the DBFS path name (at source
side) and imports it (at destination side). The f| ags argument can dictate that the
destination has a local copy in the database and references the LOB data in the DBFS
HSM Store.

22-16

Chapter 22
The DBMS_DBFS_HS Package

Copying a Linked LOB Between Tables

You can copy DBFS links from source tables to destination tables.

Use the following code to copy any DBFS Links that are stored in any SecureFiles
LOBs in the source table to the destination table.

CREATE TABLE ... AS SELECT (CTAS) and | NSERT TABLE ... AS SELECT (I TAS)

Online Redefinition and DBFS Links

Online redefinition copies any DBFS Links that are stored in any SecureFiles LOBs in
the table being redefined.

Online redefinition copies any DBFS Links that are stored in any SecureFiles LOBs in
the table being redefined.

Transparent Read

DBFS Links can read from a linked SecureFiles LOB even if the data is not cached in
the database.

You can read data from the content store where the data is currently stored and
stream that data back to the user application as if it were being read from the
SecureFiles LOB segment. This allows seamless access to the DBFS Linked data
without the prerequisite first call to DBMS_LOB. COPY_FROM DBFS_LI NK() .

Whether or not transparent read is available for a particular SecureFiles LOB is
determined by the DBFS_CONTENT store where the data resides. This feature is always
enabled for DBFS_SFS stores, and by default for DBFS_HS stores. To disable transparent
read for DBFS_HS store, set the PROPNAME_STREAMABLE parameter to FALSE.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference

The DBMS_DBFS HS Package

The DBM5_DBFS_HS package is a service provider that enables use of tape or Amazon
S3 Web service as storage for data.

Topics:
e Constants for DBMS_DBFS_HS Package
* Methods for DBMS_DBFS_HS Package

Constants for DBMS_DBFS_HS Package

The DBM5_DBFS_HS PL/SQL package constants are very detailed.

ORACLE 22-17

¢ See Also:

Chapter 22
The DBMS_DBFS_HS Package

See Oracle Database PL/SQL Packages and Types Reference for details of
constants used by DBMS_DBFS_HS PL/SQL package

Methods for DBMS_DBFS_HS Package

There are many methods in the DBMS_DBFS_HSpackage.

ORACLE

Table 22-1 summarizes the DBVMS_DBFS_HS PL/SQL package methods.

See Also:

Oracle Database PL/SQL Packages and Types Reference

Table 22-1 Methods of the DBMS_DBFS_HS PLI/SQL Packages
|

Method

Description

CLEANUPUNUSEDBACKUPFI L
ES

CREATEBUCKET

CREATESTCRE

DEREGSTORECOMMAND

DROPSTORE

FLUSHCACHE

CGETSTOREPRCPERTY

RECONFI GCACHE

REG STERSTORECOMMAND

SENDCOMVAND

Removes files that are created on the external storage device if
they have no current content.

Oracle Database PL/SQL Packages and Types Reference
Creates an AWS bucket, for use with the STORETYPE_AMAZON3
store.

Oracle Database PL/SQL Packages and Types Reference
Creates a DBFS HS store.

Oracle Database PL/SQL Packages and Types Reference

Removes a command (message) that was associated with a
store.

Oracle Database PL/SQL Packages and Types Reference

Deletes a previously created DBFS HS store.
Oracle Database PL/SQL Packages and Types Reference

Flushes out level 1 cache to level 2 cache, increasing space in
level 1.

Oracle Database PL/SQL Packages and Types Reference
Retrieves the values of a property of a store in the database.
Oracle Database PL/SQL Packages and Types Reference

Reconfigures the parameters of the database cache used by the
store.

Oracle Database PL/SQL Packages and Types Reference
Registers commands (messages) for a store so they are sent to
the Media Manager of an external storage device.

Oracle Database PL/SQL Packages and Types Reference .
Sends a command (message) to the Media Manager of an
external storage device.

Oracle Database PL/SQL Packages and Types Reference

22-18

Chapter 22
Views for DBFS Hierarchical Store

Table 22-1 (Cont.) Methods of the DBMS_DBFS_HS PL/SQL Packages

Method Description
SETSTOREPROPERTY Associates name/value properties with a registered Hierarchical
Store.

Oracle Database PL/SQL Packages and Types Reference

STOREPUSH Pushes locally cached data to an archive store.
Oracle Database PL/SQL Packages and Types Reference

Views for DBFS Hierarchical Store

The BFS Hierarchical Stores have several types of views.

There are several types of view for DBFS Hierarchical Stores.

¢ See Also:

Oracle Database Reference for the columns and data types of these views

Topics:
 DBA Views

e User Views

DBA Views

There are several views available for DBFS Hierarchical Store.
These views for DBFS Hierarchical Store are available:
« DBA DBFS_HS
This view shows all Database File System (DBFS) hierarchical stores
« DBA _DBFS_HS_PROPERTI ES

This view shows modifiable properties of all Database File System (DBFS)
hierarchical stores.

- DBA_DBFS_HS_FI XED PROPERTI ES

This view shows non-madifiable properties of all Database File System (DBFS)
hierarchical stores.

- DBA DBFS_HS_COVMANDS

This view shows all the registered store commands for all Database File System
(DBFS) hierarchical stores.

ORACLE 22-19

User Views

ORACLE

Chapter 22
Views for DBFS Hierarchical Store

There are several views available for the DBFS Hierarchical Store.

USER_DBFS_HS

This view shows all Database File System (DBFS) hierarchical stores owned by
the current user.

USER_DBFS_HS_PROPERTI ES

This view shows modifiable properties of all Database File System (DBFS)
hierarchical stores owned by current user.

USER_DBFS_HS_FI XED_PROPERTI ES

This view shows non-modifiable properties of all Database File System (DBFS)
hierarchical stores owned by current user.

USER DBFS_HS COMVANDS

This view shows all the registered store commands for all Database File system
(DBFS) hierarchical stores owned by current user.

USER DBFS_HS_FI LES

This view shows files in the Database File System (DBFS) hierarchical store
owned by the current user and their location on the backend device.

22-20

DBFS Content API

You can enable applications to use the Database File System (DBFS) in several
different programming environments.

Topics:

* Overview of DBFS Content API

* Stores and DBFS Content API

e Getting Started with DBMS_DBFS_CONTENT Package
e Administrative and Query APIs

* Querying DBFS Content API Space Usage

* DBFS Content API Session Defaults

* DBFS Content API Interface Versioning

* Notes on DBFS Content API Path Names

* DBFS Content API Creation Operations

* DBFS Content API Deletion Operations

* DBFS Content API Path Get and Put Operations

* DBFS Content APl Rename and Move Operations
* Directory Listings

* DBFS Content API Directory Navigation and Search
* DBFS Content API Locking Operations

* DBFS Content API Access Checks

* DBFS Content API Abstract Operations

» DBFS Content API Path Normalization

* DBFS Content API Statistics Support

* DBFS Content API Tracing Support

* Resource and Property Views

Overview of DBFS Content API

You can enable applications to use DBFS using the DBFS Content API
(DBMS_DBFS_CONTENT), which is a client-side programmatic API package.

You can write applications in SQL, PL/SQL, JDBC, OCI, and other programming
environments.

The DBFS Content API is a collection of methods that provide a file system-like
abstraction. It is backed by one or more DBFS Store Providers. The Content in the
DBFS Content interface refers to a file, including metadata, and it can either map to a

ORACLE 23-1

Chapter 23
Stores and DBFS Content API

SecureFiles LOB (and other columns) in a table or be dynamically created by user-
written plug-ins in Java or PL/SQL that run inside the database. The plug-in form is
referred to as a provider.

Note:

The DBFS Content API includes the SecureFiles Store Provider,
DBMS_DBFS_SFS, a default implementation that enables applications that
already use LOBs as columns in their schema, to access the LOB columns as
files.

¢ See Also:
DBFS SecureFiles Store

Examples of possible providers include:

» Packaged applications that want to surface data through files.

» Custom applications developers use to leverage the file system interface, such as
an application that stores medical images.

Stores and DBFS Content API

ORACLE

The DBFS Content API takes the common features of various stores and forms them
into a simple interface that can be used to build portable client applications, while
allowing different stores to implement the set of features they choose.

The DBFS Content API aggregates the path namespace of one or more stores into a
single unified namespace, using the first component of the path name to disambiguate
the namespace and then presents it to client applications. This allows clients to access
the underlying documents using either a full absolute path name represented by a
single string, in this form:

/ st ore- nane/ st or e- speci fi c- pat h- nane

or a store-qualified path name as a string 2-tuple, in this form:

["store-nane","/store-specific-path-name"]

The DBFS Content API then takes care of correctly dispatching various operations on
path names to the appropriate stores and integrating the results back into the client-
desired namespace.

Store providers must conform to the store provider interface (SPI) as declared by the
package DBMS_DBFS CONTENT _SPI .

» Creating Your Own DBFS Store

* Oracle Database PL/SQL Packages and Types Reference for DBVM5_DBFS_CONTENT
package syntax reference

23-2

Chapter 23
Getting Started with DBMS_DBFS_CONTENT Package

Getting Started with DBMS_DBFS_CONTENT Package

DBMS_DBFS_CONTENT is part of the Oracle Database, starting with Oracle Database 11g
Release 2, and does not need to be installed.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information

DBFS Content API Role

Access to the content operational and administrative API (packages, types, tables, and
S0 on) is available through DBFS_ROLE.

The DBFS_ROLE can be granted to all users as needed.

Path Name Constants and Types

Path name constants are modeled after their SecureFiles LOBs store counterparts.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for path name
constants and their types

Path Properties

ORACLE

Every path name in a store is associated with a set of properties.

For simplicity and generality, each property is identified by a string name, has a string
value (possibly nul | if not set or undefined or unsupported by a specific store
implementation), and a value typecode, a numeric discriminant for the actual type of
value held in the value string.

Coercing property values to strings has the advantage of making the various interfaces
uniform and compact (and can even simplify implementation of the underlying stores),
but has the potential for information loss during conversions to and from strings.

It is expected that clients and stores use well-defined database conventions for these
conversions and use the t ypecode field as appropriate.

PL/SQL types pat h_t and name_t are portable aliases for strings that can represent
pathnames and component names,

A typecode is a numeric value representing the true type of a string-coerced property
value. Simple scalar types (humbers, dates, timestamps, etc.) can be depended on by
clients and must be implemented by stores.

23-3

Chapter 23
Getting Started with DBMS_DBFS_CONTENT Package

Since standard RDBMS typecodes are positive integers, the DBMS_DBFS_CONTENT
interface allows negative integers to represent client-defined types by negative
typecodes. These typecodes do not conflict with standard typecodes, are maintained
persistently and returned to the client as needed, but need not be interpreted by the
DBFS content API or any particular store. Portable client applications should not use
user-defined typecodes as a back door way of passing information to specific stores.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT constants and properties and the
DBMS_DBFS CONTENT PROPERTY_T package

Content IDs

Content IDs are unique identifiers that represent a path in the store.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT Content ID constants and properties

Path Name Types

Stores can store and provide access to four types of entities.

The four types of entities are: type file,type directory,type directory, and
type_reference.

Not all stores must implement all directories, links, or references.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT constants and path name types

Store Features

ORACLE

In order to provide a common programmatic interface to as many different types of
stores as possible, the DBFS Content API leaves some of the behavior of various
operations to individual store providers to define and implement.

The DBFS Content API remains rich and conducive to portable applications by
allowing different store providers (and different stores) to describe themselves as a
feature set. A feature set is a bit mask indicating which features they support and
which ones they do not. With this, it is possible, although tricky, for client applications

23-4

Chapter 23
Getting Started with DBMS_DBFS_CONTENT Package

to compensate for the feature deficiencies of specific stores by implementing
additional logic on the client side, and deferring complex operations to stores capable
of supporting them.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
store features and constants

Lock Types

Stores that support locking should implement three types of locks.
The three types of locks are: | ock_read only,lock wite only,lock read wite.

User locks (any of these types) can be associated with user-supplied | ock_dat a. The
store does not interpret the data, but client applications can use it for their own
purposes (for example, the user data could indicate the time at which the lock was
placed, and the client application might use this later to control its actions.

In the simplest locking model, a | ock_read_onl y prevents all explicit modifications to a
path name (but allows implicit modifications and changes to parent/child path names).
Alock_wite_only prevents all explicit reads to the path name, but allows implicit
reads and reads to parent/child path names. Al ock_read write allows both.

All locks are associated with a principal user who performs the locking operation;
stores that support locking are expected to preserve this information and use it to
perform read/write lock checking (see opt _| ocker).

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
lock types and constants.

Standard Properties

Standard properties are well-defined, mandatory properties associated with all content
path names, which all stores must support, in the manner described by the DBFS
Content API. Stores created against tables with a fixed schema may choose
reasonable defaults for as many of these properties as needed, and so on.

All standard properties informally use the st d namespace. Clients and stores should
avoid using this namespace to define their own properties to prevent conflicts in the
future.

ORACLE 23-5

Chapter 23
Getting Started with DBMS_DBFS_CONTENT Package

¢ See Also:

See Oracle Database PL/SQL Packages and Types Reference for details of
the standard properties and constants

Optional Properties

Optional properties are well-defined but non-mandatory properties associated with all
content path names that all stores are free to support (but only in the manner
described by the DBFS Content API).

Clients should be prepared to deal with stores that support none of the optional
properties.

All optional properties informally use the opt namespace. Clients and stores must
avoid using this namespace to define their own properties to prevent conflicts in the
future.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
optional properties and constants

User-Defined Properties

You can define your own properties for use in your application.

Ensure that the namespace prefixes do not conflict with each other or with the DBFS
standard or optional properties.

Property Access Flags

DBFS Content API methods to get and set properties can use combinations of
property access flags to fetch properties from different namespaces in a single API
call.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
property access flags and constants

Exceptions

DBFS Content API operations can raise any one of the top-level exceptions.

ORACLE 23-6

Chapter 23
Getting Started with DBMS_DBFS_CONTENT Package

Clients can program against these specific exceptions in their error handlers without
worrying about the specific store implementations of the underlying error signalling
code.

Store service providers, should try to trap and wrap any internal exceptions into one of
the exception types, as appropriate.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
Exceptions

Property Bundles

Property bundles are discussed as property_t record type and properties_t.

e« The property_t record type describes a single (value, typecode) property value
tuple; the property name is implied.

e properties_t isaname-indexed hash table of property tuples. The implicit hash-
table association between the index and the value allows the client to build up the
full dbrs_dbfs_content _property_t tuples for aproperties_t.

There is an approximate correspondence between dbns_dbf s_content _property t
and property_t. The former is a SQL object type that describes the full property tuple,
while the latter is a PL/SQL record type that describes only the property value
component.

There is an approximate correspondence between dbrms_dbf s_content _properties_t
and properties_t. The formeris a SQL nested table type, while the latter is a PL/SQL
hash table type.

Dynamic SQL calling conventions force the use of SQL types, but PL/SQL code may
be implemented more conveniently in terms of the hash-table types.

DBFS Content API provides convenient utility functions to convert between
dbns_dbfs_content _properties_t and properties_t.

The function DBMS_DBFS_CONTENT. PROPERTI EST2H converts a
DBVMS_DBFS_CONTENT_PROPERTI ES T value to an equivalent properties_t value, and
the function DBMS_DBFS_CONTENT. PROPERTI ESH2T converts a properties_t value to an
equivalent DBMS_DBFS CONTENT_PROPERTI ES T value.

" See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
PROPERTY_T record type

Store Descriptors

Store descriptors are discussed as store_t and nount _t records.

ORACLE 23-7

Chapter 23
Administrative and Query APIs

« Astore_t is arecord that describes a store registered with, and managed by the
DBFS Content API .

e Anount t is arecord that describes a store mount point and its properties.

Clients can query the DBFS Content API for the list of available stores, determine
which store handles accesses to a given path name, and determine the feature set for
the store.

¢ See Also:

e Administrative and Query APls

e Oracle Database PL/SQL Packages and Types Reference for details of
the STORE_T record type

Administrative and Query APIs

Administrative clients and content providers are expected to register content stores
with the DBFS Content API. Additionally, administrative clients are expected to mount
stores into the top-level namespace of their choice.

The registration and unregistration of a store is separated from the mount and
unmount of a store because it is possible for the same store to be mounted multiple
times at different mount points (and this is under client control).

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for the summary
of DBMS_DBFS_CONTENT package methods

This section covers the following topics:

* Registering a Content Store

* Unregistering a Content Store

* Mounting a Registered Store

* Unmounting a Previously Mounted Store

e Listing all Available Stores and Their Features
» Listing all Available Mount Points

* Looking Up Specific Stores and Their Features

Registering a Content Store

You can register a new store that is backed by a provider that uses the
provi der _package procedure as the store service provider. The method of registration
conforms to the DBMS_DBFS_CONTENT_SPI package signature.

ORACLE 23-8

Chapter 23
Administrative and Query APIs

» Use the REG STERSTORE() procedure.

This method is designed for use by service providers after they have created a new
store. Store names must be unique.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
REG STERSTORE() method

Unregistering a Content Store

You can unregister a previously registered store, which invalidates all mount points

associated with it. Once the store is unregistered, access to the store and its mount
points is no longer guaranteed, although a consistent read may provide a temporary
illusion of continued access.

* Use the UNREG STERSTORE() procedure.

If the i gnor e_unknown argument is t r ue, attempts to unregister unknown stores do not
raise an exception.

" See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
UNREG STERSTORE() method

Mounting a Registered Store

ORACLE

You can mount a registered store and bind it to the mount point.

* Use the MOUNTSTORE() procedure.

After you mount the store, access to the path names in the form /st or e_nount /xyz is
redirected to st or e_nane and its content provider.

Store mount points must be unique, and a syntactically valid path name component
(that is, a name_t with no embedded /).

If you do not specify a mount point and therefore, it is nul | , the DBFS Content API
attempts to use the store name itself as the mount point name (subject to the
uniqueness and syntactic constraints).

A special empty mount point is available for single stores, that is in a scenario where
the DBFS Content APl manages a single back-end store. Then, the client can directly
deal with full path names of the form / xyz because there is no ambiguity in how to
redirect these accesses.

The same store can be mounted multiple times, obviously at different mount points.

23-9

Chapter 23
Administrative and Query APIs

You can use mount properties to specify the DBFS Content API execution
environment, that is, the default values of the principal, owner, ACL, and asof , for a
particular mount point. You can also use mount properties to specify a read-only store.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
MOUNTSTORE() method

Unmounting a Previously Mounted Store

You can unmount a previously mounted store, either by name or by mount point. You
can only unmount single stores by store name because they have no mount points.
Attempting to unmount a store by name unmounts all mount points associated with the
store.

* Use the UNMOUNTSTORE() procedure.

Once unmounted, access to the store or mount-point is no longer guaranteed to work
although a consistent read may provide a temporary illusion of continued access. If the
i gnor e_unknown argument is t r ue, attempts to unregister unknown stores or mounts
does not raise an exception.

" See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
UNMOUNTSTORE method

Listing all Available Stores and Their Features

You can list all the available stores. The st ore_munt field of the returned records is
set to nul | because mount points are separate from stores themselves.

e Use the LI STSTORES() function.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
LI STSTORES Function

Listing all Available Mount Points

You can list all available mount points, their backing stores, and the store features. A
single mount returns a single row, with the st ore_nount field setto nul | .

e Use the LI STMOUNTS() function.

ORACLE 23-10

Chapter 23
Querying DBFS Content API Space Usage

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
LI STMOUNTS() method

Looking Up Specific Stores and Their Features

You can look up the path name, store name, or mount point of a store.

« Use GETSTOREBYXXX() or GETFEATUREBYXXX() functions.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

Querying DBFS Content API Space Usage

You can query file system space usage statistics.

Providers are expected to support this method for their stores and to make a best
effort determination of space usage, especially if the store consists of multiple tables,
indexes, LOBs, and so on.

* Use the SPACEUSAGE() method

where:

* Dbl ksi ze is the natural tablespace block size that holds the store; if multiple
tablespaces with different block sizes are used, any valid block size is acceptable.

e thytes is the total size of the store in bytes, and f byt es is the free or unused size
of the store in bytes. These values are computed over all segments that comprise
the store.

« nfile,ndir,nlink, and nref countthe number of currently available files,
directories, links, and references in the store.

Database objects can grow dynamically, so it is not easy to estimate the division
between free space and used space.

A space usage query on the top level root directory returns a combined summary of
the space usage of all available distinct stores under it. If the same store is mounted
multiple times, it is counted only once.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
SPACEUSACGE() method

ORACLE 23-11

Chapter 23
DBFS Content API Session Defaults

DBFS Content API Session Defaults

Normal client access to the DBFS Content API executes with an implicit context that
consists of certain objects.

e The principal invoking the current operation.

* The owner for all new elements created (implicitly or explicitly) by the current
operation.

e The ACL for all new elements created (implicitly or explicitly) by the current
operation.

* The ASCF timestamp at which the underlying read-only operation (or its read-only
sub-components) execute.

All of this information can be passed in explicitly through arguments to the various
DBFS Content API method calls, allowing the client fine-grained control over individual
operations.

The DBFS Content API also allows clients to set session duration defaults for the
context that are automatically inherited by all operations for which the defaults are not
explicitly overridden.

All of the context defaults start out as nul | and can be cleared by setting them to nul | .

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

DBFS Content API Interface Versioning

To allow for the DBFS Content API itself to evolve, an internal numeric API version
increases with each change to the public API.

" See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
CGETVERSI ON() method

Notes on DBFS Content APl Path Names

Clients of the DBFS Content API refer to store items through absolute path names.
Absolute path names may be:

o fully qualified (a single string of the form / mount _poi nt/ pat hnane)

ORACLE 23-12

Chapter 23
DBFS Content API Creation Operations

» store-qualified (a tuple of the form (st ore_nanme, pat hnane), where the path name
is rooted within the store namespace)

Clients may use either naming scheme and can use both naming methods within their
programs.

If path names are returned by DBFS Content API calls, the exact values being
returned depend on the naming scheme used by the client in the call. For example, a
listing or search on a fully qualified directory name returns items with their fully
gualified path names, while a listing or search on a store-qualified directory name
returns items whose path names are store-specific, and the store-qualification is
implied.

The implementation of the DBFS Content API internally manages the normalization
and inter-conversion between these two naming schemes.

DBFS Content API Creation Operations

ORACLE

You must implement the provider SPI so that when clients invoke the DBFS Content
API, it causes the SPI to create directory, file, link, and reference elements (subject to
store feature support).

All of the creation methods require a valid path name and can optionally specify
properties to be associated with the path name as it is created. It is also possible for
clients to fetch back item properties after the creation completes, so that automatically
generated properties, such as std_creation_time, are immediately available to
clients. The exact set of properties fetched back is controlled by the various pr op_xxx
bit masks in prop_fl ags.

Links and references require an additional path name associated with the primary path
name. File path names can optionally specify a BLOB value to initially populate the
underlying file content, and the provided BLOB may be any valid LOB, either temporary
or permanent. On creation, the underlying LOB is returned to the client if prop_dat a is
specified in prop_f | ags.

Non-directory path names require that their parent directory be created first. Directory
path names themselves can be recursively created. This means that the path name
hierarchy leading up to a directory can be created in one call.

Attempts to create paths that already exist produce an error, except for path names
that are soft-deleted. In these cases, the soft-deleted item is implicitly purged, and the
new item creation is attempted.

Stores and their providers that support contentlD-based access accept an explicit
store name and a NULL path to create a new content element. The contentID
generated for this element is available by means of the OPT_CONTENT_| D property. The
PROP_OPT property in the prop_f | ags parameter automatically implies contentlD-based
creation.

The newly created element may also have an internally generated path name if the
FEATURE _LAZY_PATH property is not supported and this path is available by way of the
STD_CANONI CAL_PATH property.

Only file elements are candidates for contentID-based access.

23-13

Chapter 23
DBFS Content API Deletion Operations

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference for details of
the DBMS_DBFS_CONTENT() methods, DBMS_DBFS_CONTENT() Constants -
Optional Properties, and DBVMS_DBFS CONTENT Constants - Standard
Properties

DBFS Content API Deletion Operations

You must implement the provider SPI so that when clients invoke the DBFS Content
API, it causes the SPI to delete directory, file, link, and reference elements (subject to
store feature support).

By default, the deletions are permanent, and remove successfully deleted items on
transaction commit. However, repositories may also support soft-delete features. If
requested by the client, soft-deleted items are retained by the store. They are not,
however, typically visible in normal listings or searches. Soft-deleted items may be
restored or explicitly purged.

Directory path names may be recursively deleted; the path name hierarchy below a
directory may be deleted in one call. Non-recursive deletions can be performed only
on empty directories. Recursive soft-deletions apply the soft-delete to all of the items
being deleted.

Individual path names or all soft-deleted path names under a directory may be
restored or purged using the RESTOREXXX() and PURGEXXX() methods.

Providers that support filtering can use the provider filter to identify subsets of items to
delete; this makes most sense for bulk operations such as del eteDi rectory(),
RESTOREALL(), and PURGEALL(), but all of the deletion-related operations accept a filter
argument.

Stores and their providers that support contentlD-based access can also allow deleting
file items by specifying their contentID.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS CONTENT() methods

DBFS Content API Path Get and Put Operations

ORACLE

You can query existing path items or update them using simple GETXXX() and
PUTXXX() methods.

All path names allow their metadata to be read and modified. On completion of the
call, the client can request that specific properties be fetched through prop_f 1 ags.

23-14

Chapter 23
DBFS Content APl Rename and Move Operations

File path names allow their data to be read and modified. On completion of the call,
the client can request a new BLOB locator through the pr op_dat a bit masks in
prop_fl ags; these may be used to continue data access.

Files can also be read and written without using BLOB locators, by explicitly specifying
logical offsets, buffer amounts, and a suitably sized buffer.

Update accesses must specify the f or Updat e flag. Access to link path names may be
implicitly and internally dereferenced by stores, subject to feature support, if the der ef
flag is specified. Oracle does not recommend this practice because symbolic links are
not guaranteed to resolve.

The read method GETPATH() where f or Updat e is f al se accepts a valid asof
timestamp parameter that can be used by stores to implement flashback-style queries.

Mutating versions of the GETPATH() and the PUTPATH() methods do not support asof
modes of operation.

The DBFS Content API does not have an explicit COPY() operation because a copy is
easily implemented as a combination of a GETPATH() followed by a CREATEXXX() with
appropriate data or metadata transfer across the calls. This allows copies across
stores, while an internalized copy operation cannot provide this facility.

" See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

DBFS Content APl Rename and Move Operations

ORACLE

You can rename or move path names, possibly across directory hierarchies and
mount points, but only within the same store.

Non-directory path names previously accessible by ol dPat h can be renamed as a
single item subsequently accessible by newPat h, assuming that newPat h does not
exist.

If newPat h exists and is not a directory, the rename implicitly deletes the existing item
before renaming ol dPat h. If newPat h exists and is a directory, ol dPat h is moved into
the target directory.

Directory path names previously accessible by ol dPat h can be renamed by moving
the directory and all of its children to newPat h (if it does not exist) or as children of
newPat h (if it exists and is a directory).

Because the semantics of rename and move is complex with respect to non-existent
or existent and non-directory or directory targets, clients may choose to implement
complex rename and move operations as sequences of simpler moves or copies.

Stores and their providers that support contentlD-based access and lazy path name
binding also support the Oracle Database PL/SQL Packages and Types Reference
SETPATH procedure that associates an existing contentID with a new "path".

23-15

Chapter 23
Directory Listings

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT. RENAMEPATH() methods

Directory Listings
Directory listings are handled several different ways.

e Alist_itemt is atuple of path name, component hame, and type representing a
single element in a directory listing.

e Apath_itemt is atuple describing a store, mount qualified path in a content
store, with all standard and optional properties associated with it.

e Aprop_itemt is atuple describing a store, mount qualified path in a content
store, with all user-defined properties associated with it, expanded out into
individual tuples of name, value, and type.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of data
structures

DBFS Content API Directory Navigation and Search

Clients of the DBFS Content API can list or search the contents of directory path
names, with optional modes.

Optional Modes:

e searching recursively in sub-directories

e seeing soft-deleted items

« using flashback asof a provided timestamp

» filtering items in and out within the store based on list or search predicates.

The DBFS Content API currently only returns list items; clients explicitly use one of the
get Pat h() methods to access the properties or content associated with an item, as
appropriate.

" See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

ORACLE 23-16

Chapter 23
DBFS Content API Locking Operations

DBFS Content API Locking Operations

DBFS Content API clients can apply user-level locks,depending on certain criteria.

Clients of the DBFS Content API can apply user-level locks to any valid path name,
subject to store feature support, associate the lock with user data, and subsequently
unlock these path names. The status of locked items is available through various
optional properties.

If a store supports user-defined lock checking, it is responsible for ensuring that lock
and unlock operations are performed in a consistent manner.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

DBFS Content API Access Checks

The DBFS Content API checks the access of specific path names by operations.

Function CHECKACCESS() checks if a given path name (pat h, pat ht ype, st or e_nane)
can be manipulated by an operation, such as the various op_xxx opcodes) by
princi pal , as described in "DBFS Content API Locking Operations”

This is a convenience function for the client; a store that supports access control still
internally performs these checks to guarantee security.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

DBFS Content API Abstract Operations

ORACLE

All of the operations in the DBFS Content API are represented as abstract opcodes.

Clients can useopcodes to directly and explicitly invoke the CHECKACCESS() method
which verifies if a particular operation can be invoked by a given principal on a
particular path name.

An op_acl () is an implicit operation invoked during an op_creat e() or op_put () call,
which specifies a st d_acl property. The operation tests to see if the principal is
allowed to set or change the ACL of a store item.

op_del et e() represents the soft-deletion, purge, and restore operations.

23-17

Chapter 23
DBFS Content API Path Normalization

The source and destination operations of a rename or move operation are separated,
although stores are free to unify these opcodes and to also treat a rename as a
combination of delete and create.

op_store is a catch-all category for miscellaneous store operations that do not fall
under any of the other operational APIs.

¢ See Also:

« DBFS Content APl Access Checks

e Oracle Database PL/SQL Packages and Types Reference for more
information about DBMS_DBFS_CONTENT Constants - Operation Codes.

DBFS Content APl Path Normalization

There is a process for performing API path normalization.
Function NORMALI ZEPATH() performs the following steps:
Verifies that the path name is absolute (starts with a /).
Collapses multiple consecutive / s into a single / .

Strips trailing / s.

Eal A

Breaks store-specific normalized path names into two components: the parent
path name and the trailing component name.

5. Breaks fully qualified normalized path names into three components: store name,
parent path name, and trailing component name.

Note that the root path / is special: its parent path name is also / , and its component
name is nul | . In fully qualified mode, it has a nul | store name unless a singleton
mount has been created, in which case the appropriate store name is returned.

The return value is always the completely normalized store-specific or fully qualified
path name.

¢ See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT. RENAMEPATH() methods

DBFS Content API Statistics Support

ORACLE

DBFS provides support to reduce the expense of collecting DBFS Content API
statistics.

DBFS Content API statistics are expensive to collect and maintain persistently. DBFS
has support for buffering statistics in memory for a maximum of f | ush_ti ne

23-18

Chapter 23
DBFS Content API Tracing Support

centiseconds or a maximum of f | ush_count operations, whichever limit is reached
first), at which time the buffers are implicitly flushed to disk.

Clients can also explicitly invoke a flush using f | ushSt at s. An implicit flush also
occurs when statistics collection is disabled.

set Stat s is used to enable and disable statistics collection; the client can optionally
control the flush settings by specifying non-nul | values for the time and count
parameters.

See Also:

Oracle Database PL/SQL Packages and Types Reference for details of the
DBMS_DBFS_CONTENT methods

DBFS Content API Tracing Support

Any DBFS Content API user (both clients and providers) can use DBFS Content API
tracing, a generic tracing facility.

The DBFS Content API dispatcher itself uses the tracing facility.

Trace information is written to the foreground trace file, with varying levels of detail as
specified by the trace level arguments. The global trace level consists of two
components: severity and det ai | . These can be thought of as additive bit masks.

The severity component allows the separation of top-level as compared to low-level
tracing of different components, and allows the amount of tracing to be increased as
needed. There are no semantics associated with different levels, and users are free to
set the trace level at any severity they choose, although a good rule of thumb would be
to use severity 1 for top-level API entry and exit traces, severity 2 for internal
operations, and severity 3 or greater for very low-level traces.

The det ai | component controls how much additional information the trace reports with
each trace record: timestamps, short-stack, and so on.

See Also:
e Example 23-1 for more information about how to enable tracing using the
DBFS Content APIs.

e Oracle Database PL/SQL Packages and Types Reference for details of
the DBMS_DBFS_CONTENT methods

Example 23-1 DBFS Content Tracing

function get Trace
return integer;
procedure setTrace(

trclvl in i nteger);
function traceEnabl ed(
sev in i nteger)

ORACLE 23-19

Resource and Property Views

ORACLE

return integer;

procedure trace(

sev
msg0
nsgl
msg2
msg3
nmsg4
msg5
msg6
nsg7
msg8
msg9
msgl0

in
in
in
in
in
in
in
in
in
in
in
in

i nteger,
var char 2
var char
var char
var char
var char
var char
var char
var char
var char
var char
var char

default "'
default "'
default "'
default "'
default "'
default "'
default "'
default "'
default "'
default "'

Chapter 23
Resource and Property Views

You can see descriptions of Content API structure and properties in certain views.

Certain views describe the structure and properties of Content API.

¢ See Also:

views

e Oracle Database Reference for more information about DBFS_CONTENT

e Oracle Database Reference for more information about
DBFS_CONTENT_PROPERTI ES views

23-20

Creating Your Own DBFS Store

You can create your own DBFS Store using DBFS Content SPI
(DBVS_DBFS_CONTENT_SPI) .

Topics:
e Overview of DBFS Store Creation and Use

» DBFS Content Store Provider Interface (DBFS Content SPI)

e Creating a Custom Provider

Overview of DBFS Store Creation and Use

ORACLE

In order to customize a DBFS store, you must implement the DBFS Content SPI
(DBVS_DBFS_CONTENT_SPI) . It is the basis for existing stores such as the DBFS
SecureFiles Store and the DFFS Hierarchical Store, as well as any user-defined DBFS
stores that you create.

Client-side applications, such the PL/SQL interface, invoke functions and procedures
in the DBFS Content API. The DBFS Content API then invokes corresponding
subprograms in the DBFS Content SPI to create stores and perform other related
functions.

Once you create your DBFS store, you run it much the same way that you would a
SecureFiles Store.
¢ See Also:

« DBFS Content API
« DBFS SecureFiles Store

24-1

Figure 24-1 Database File System (DBFS)

File System
Mount
Interface

DBFS
Command
Line Interface
Client

4
v

DBFS Content API

DBFS Content SPI

!

!

DBFS
SecureFile
Store

DBFS
Hierarchical
Store

(o]¢]|
LOB
Interface
A
Java
LOB
DBFS Interface
PL/SQL
Client PL/SQL
LOB
* Interface
DBFS V¥
Links
] ()]
/I
I User !
+ Defined |
: Store |

<

Cloud
Storage

Chapter 24

DBFS Content Store Provider Interface (DBFS Content SPI)

DBFS Content Store Provider Interface (DBFS Content SPI)

ORACLE

The DBFS Content SPI (Store Provider Interface) is a specification only and has no
package body.

You must implement the package body in order to respond to calls from the DBFS
Content API. In other words, DBFS Content SPI is a collection of required program
specifications which you must implement using the method signatures and semantics
indicated.

You may add additional functions and procedures to the DBFS Content SPI package
body as needed. Your implementation may implement other methods and expose
other interfaces, but the DBFS Content API will not use these interfaces.

24-2

Chapter 24
Creating a Custom Provider

The DBFS Content SPI references various elements such as constants, types, and
exceptions defined by the DBFS Content API (package DBVS_DBFS_CONTENT).

Note that all path name references must be store-qualified, that is, the notion of mount
points and full absolute path names has been normalized and converted to store-
gualified path names by the DBFS Content API before it invokes any of the Provider
SPI methods.

Because the DBFS Content API and Provider SPI is a one-to-many pluggable
architecture, the DBFS Content APl uses dynamic SQL to invoke methods in the
Provider SPI; this may lead to run time errors if your Provider SPI implementation does
not follow the Provider SPI specification in this document.

There are no explicit initial or final methods to indicate when the DBFS Content API
plugs and unplugs a particular Provider SPI. Provider SPIs must be able to auto-
initialize themselves at any SPI entry wpoint.

¢ See Also:

e Oracle Database PL/SQL Packages and Types Reference for syntax of
the DBMS_DBFS_CONTENT_SPI package

* See the file $ORACLE_HOVE/ r dbns/ admi n/ dbnscapi . sql for more
information

Creating a Custom Provider

ORACLE

You can use this example store provider for DBFS, TaBleFileSystem Store Provider
("tbfs"), as a skeleton for custom providers or as a learning tool, to become familiar
with the DBFS and its SPI.

This example store provider for DBFS, exposes a relational table containing a BLOB
column as a flat, non-hierarchical filesystem, that is, a collection of named files.

To use this example, it is assumed that you have installed the Oracle Database 12¢
and are familiar with DBFS concepts, and have installed and used dbfs_cl i ent and
FUSE to mount and access filesystems backed by the standard SFS store provider.

The TaBleFileSystem Store Provider (“tbfs") does not aim to be feature-rich or even
complete, it does however provide a sufficient demonstration of what it takes for users
of DBFS to write their own custom providers that expose their table(s) through
dbfs_client to traditional filesystem programs.

Topics:

¢ Mechanics

e TBFS.SQL
e TBL.SQL
e spec.sql

* body.sql

e capi.sql

24-3

Mechanics

Chapter 24
Creating a Custom Provider

These are the mechanics of the example store provider for DBFS, TaBleFileSystem
Store Provider ("tbfs").

Topics:

* Installation and Setup
e TBFS Use

* TBFS Internals

Installation and Setup

TBFS Use

ORACLE

You will need certain files for installation and setup of the DBFS TaBleFileSystem
Store Provider (“tbfs").

The TBFS consists of the following SQL files:

tbfs. sql top-level driver script

thl.sql script to create a test user, tablespace, the table backing the filesystem,
and so on.

spec. sql the SPI specification of the tbfs

body. sql the SPI implementation of the tbfs

capi . sql DBFS register/mount script

To install the TBFS, just run t bf s. sql as SYSDBA, in the directory that contains all of
the above files. t bf s. sql will load the other SQL files in the proper sequence.

Ignoring any name conflicts, all of the SQL files should load without any compilation
errors. All SQL files should also load without any run time errors, depending on the
value of the "plsgl_warnings" init.ora parameter, you may see various innocuous
warnings.

If there are any name conflicts (tablespace name TBFS, datafile name"tbfs.f", user
name TBFS, package name TBFS), the appropriate references in the various SQL
files must be changed consistently.

Once the example store provider for DBFS, TaBleFileSystem Store Provider ("tbfs") is
installed, files can be added or removed in several different ways and other changes
can be made to the TBFS.

A dbfs_client connected as user TBFS will see a simple, non-hierarchical, filesystem
backed by an RDBMS table (TBFS.TBFST).

Files can be added or removed from this filesystem through SQL (that is, through DML
on the underlying table), through Unix utilities (mediated by dbfs_cl i ent), or through
PL/SQL (using the DBFS APIs).

24-4

Chapter 24
Creating a Custom Provider

Changes to the filesystem made through any of the access methods will be visible, in
a transactionally consistent manner (that is, at commit/rollback boundaries) to all of the
other access methods.

TBFS Internals

The TBFS is simple because its primary purpose is to serve as a teaching and
learning example.

However, the implementation shows the path towards a robust, production-quality
custom SPI that can plug into the DBFS, and expose existing relational data as Unix
filesystems.

The TBFS makes various simplifications in order to remain concise (however, these
should not be taken as inviolable limitations of DBFS or the SPI):

ORACLE

The TBFS SPI package handles only a single table with a hard-coded name
(TBFS.TBFST). It is possible to use dynamic SQL and additional configuration
information to have a single SPI package support multiple tables, each as a
separate filesystem (or even to unify data in multiple tables into a single
filesystem).

The TBFS does not support filesystem hierarchies; it imposes a flat namespace: a
collection of files, identified by a simple item name, under a virtual "/* root
directory. Implementing directory hierarchies is significantly more complex
because it requires the store provider to manage parent/child relationships in a
consistent manner.

Moreover, existing relational data (the kind of data that TBFS is attempting to
expose as a filesystem) does not typically have inter-row relationships that form a
natural directory/file hierarchy.

Because the TBFS supports only a flat namespace, most methods in the SPI are
unimplemented, and the method bodies raise a

dbns_dbf s_cont ent. unsupport ed_oper at i on exception. This exception is also a
good starting point for you to write your own custom SPI. You can start with a
simple SPI skeleton cloned from the DBMS_DBFS CONTENT _SPI package, default all
method bodies to ones that raise this exception, and subsequently fill in more
realistic implementations incrementally.

The table underlying the TBFS is close to being the simplest possible structure (a
key/name column and a LOB column). This means that various properties used or
expected by DBFS and dbf s_cl i ent must be generated dynamically (the TBFS
implementation shows how this is done for the st d: gui d property).

Other properties (such as Unix-style timestamps) are not implemented at all. This
still allows a surprisingly functional filesystem to be implemented, but when you
write your own custom SPIs, you can easily incorporate support for additional
DBFS properties by expanding the structure of their underlying table(s) to include
additional columns as needed, or by using existing columns in their existing tables
to provide the values for these DBFS properties.

The TBFS does not implement a rename/move method; adding support for this (a
suitable UPDATE statement in the r enanePat h method) is left as an exercise for the
user.

The TBFS example uses the string "tbfs" in multiple places (tablespace, datafile,
user, package, and even filesystem name). All these uses of "tbfs" belong in
different namespaces—identifying which namespace corresponds to a specific

24-5

TBFS.SQL

TBL.SQL

ORACLE

Chapter 24
Creating a Custom Provider

occurrence of the string. "tbfs" in these examples is also a good learning exercise
to make sure that the DBFS concepts are clear in your mind.

The TBFS.SQL script is the top level driver script.
The TBFS.SQL script:

set echo on;

@bl

@pec
@ody
@api

quit;

The TBL.SQL script creates a test user, a tablespace, the table that backs the
filesystem and so on.

The TBL.SQL script :

connect / as sysdba

create tabl espace tbfs datafile '"thfs.f' size 100m
reuse autoextend on
extent managenent | ocal
segnent space nmanagement auto;

create user thfs identified by tbfs;
alter user thfs default tablespace tbfs;
grant connect, resource, dbfs_role to thfs;

connect tbhfs/tbfs;

drop table tbfst;
purge recycl ebin;

create table tbfst(
key var char 2(256)

primary key
check (instr(key, '/') =0),
data bl ob)
tabl espace tbfs
| ob(dat a)

store as securefile
(tabl espace tbfs);

grant select on tbfst to dbfs_role;
grant insert on tbfst to dbfs_role;
grant delete on tbfst to dbfs_role;
grant update on tbfst to dbfs_role;

24-6

spec.sql

ORACLE

Chapter 24

Creating a Custom Provider

The spec. sql script provide the SPI specification of the tbfs.

The spec. sql script:

connect / as sysdba

create or replace package tbfs
authid current _user

as

I T

Lookup store features (see dbns_dbfs_content.feature_XXX). Lookup
store id.

A store IDidentifies a provider-specific store, across
registrations and mounts, but independent of changes to the store
contents

|.e. changes to the store table(s) should be reflected in the
store ID, but re-initialization of the same store table(s) should
preserve the store ID.

Provi ders should also return a "version" (either specific to a
provi der package, or to an individual store) based on a standard
<a.b.c> namng convention (for <major>, <minor> and <patch>
conponent s)

/

function get Feat ures(
store_nane in var char 2)
return integer
function get Storel d(
store_nane in var char 2)
return nunber;
function get Ver si on(
store_nane in var char 2)
return varchar?2
/*
* Lookup pathnames by (store_nane, std_guid) or (store_nount,
* std_guid) tuples
*
* |f the underlying "std_guid" is found in the underlying store
* this function returns the store-qualified pathnane.
*
* |f the "std_guid" is unknown, a "null" value is returned. Clients
* are expected to handle this as appropriate
*
*

function

/

get Pat hBy St or el d(

24-7

ORACLE

R T O R

Chapter 24
Creating a Custom Provider

store_nane in varchar 2,
guid in i nteger)
return varchar?2;

DBFS SPI: space usage.

Clients can query filesystem space usage statistics via the
"spaceUsage()" nethod. Providers are expected to support this
method for their stores (and to make a best effort determination
of space usage---esp. if the store consists of multiple

tabl es/indexes/ | obs, etc.).

"bl ksi ze" is the natural tablespace bl ocksize that holds the
store---if multiple tablespaces with different blocksizes are
used, any valid blocksize is acceptable.

"tbytes" is the total size of the store in bytes, and "fhytes" is
the free/unused size of the store in bytes. These values are
conputed over all segments that conprise the store.

“nfile", "ndir", "nlink", and "nref" count the nunber of
currently available files, directories, links, and references in
the store.

Since database objects are dynanmically growable, it is not easy
to estimate the division between "free" space and "used" space.

procedure spaceUsage(

T R R R R

store_nanme in varchar 2,
bl ksi ze out i nteger,
tbytes out i nteger,
fbytes out i nteger,
nfile out i nteger,
ndir out i nteger,
nlink out i nteger,
nr ef out i nteger);

DBFS SPI: notes on pat hnanes.

Al pathnanmes used in the SPI are store-qualified, i.e. a 2-tuple
of the form (store_name, pathnane) (where the pathname is rooted
within the store namespace).

Stores/providers that support contentlD based access (see
"feature_content _id") also support a formof addressing that is
not based on pathnames. Items are identified by an explicit store
nane, a "null" pathname, and possibly a contentID specified as a
paraneter or via the "opt_content_id" property.

Not all operations are supported with contentlD based access, and

applications should depend only on the sinplest create/delete
functionality being avail able.

24-8

Chapter 24
Creating a Custom Provider

DBFS SPI: creation operations

The SPI nust allow the DBFS APl to create directory, file, Iink,
and reference el ements (subject to store feature support).

Al of the creation methods require a valid pathname (see the
speci al exenption for contentlD based access bel ow), and can
optional Iy specify properties to be associated with the pathnane
as it is created. It is also possible for clients to fetch-back
itemproperties after the creation conpletes (so that

automatical |y generated properties (e.g. "std_creation_tine") are
imedi ately available to clients (the exact set of properties
fetched back is controlled by the various "prop_xxx" bitmasks in

“prop_flags").

Links and references require an additional pathname to associate
with the primary pathname.

Fil e pathnanes can optionally specify a BLOB value to use to
initially populate the underlying file content (the provided BLOB
may be any valid lob: tenporary or permanent). On creation, the
underlying lob is returned to the client (if "prop_data" is
specified in "prop_flags").

Non-directory pathnanes require that their parent directory be
created first. Directory pathnanes thensel ves can be recursively
created (i.e. the pathnane hierarchy leading up to a directory
can be created in one call).

Attenpts to create paths that already exist is an error; the one
exception is pathnanes that are "soft-del eted" (see below for
del ete operations)---in these cases, the soft-deleted itemis
implicitly purged, and the newitemcreation is attenpted.

Stores/providers that support contentlD based access accept an
explicit store name and a "null" path to create a new el enent.
The content|D generated for this element is available via the
"opt _content _id" property (contentlD-based creation automatically
implies "prop_opt" in "prop_flags").

The newly created el enent may al so have an internally generated
pathnane (if "feature_lazy_path" is not supported) and this path
is available via the "std_canonical _path" property.

Only file elenents are candidates for contentlD based access.

S T A . T T e

/
procedure createFil e(

store_name in varchar 2,
path in varchar 2,

ORACLE 24-9

ORACLE

Chapter 24
Creating a Custom Provider

properties in out nocopy dbns_dbfs_content _properties_t,

cont ent in out nocopy blob,
prop_flags in i nteger,
ctx in dbns_dbfs_content _context _t);

procedure createli nk(

store_name in var char 2,

srcPath in varchar 2,

dst Pat h in varchar 2,

properties in out nocopy dbns_dbfs_content _properties_t,
prop_flags in i nteger,

ctx in dbns_dbfs_content _context _t);

procedure createReference(

store_nanme in var char 2,

srcPath in varchar 2,

dst Pat h in varchar 2,

properties in out nocopy dbns_dbfs_content_properties_t,
prop_flags in i nteger,

ctx in dbns_dbfs_content _context _t);

procedure createDirectory(

I T T T

store_name in varchar 2,

path in var char 2,

properties in out nocopy dbns_dbfs_content_properties_t,
prop_flags in i nteger,

recurse in i nteger,

ctx in dbns_dbfs_content _context _t);

DBFS SPI: del etion operations

The SPI nust allow the DBFS APl to delete directory, file, Iink,
and reference el ements (subject to store feature support).

By default, the deletions are "permanent" (get rid of the
successful ly deleted items on transaction comit), but stores may
al so support "soft-delete" features. If requested by the client,
soft-deleted items are retained by the store (but not typically
visible in normal listings or searches).

Soft-deleted itenms can be "restore"d, or explicitly purged.

Directory pathnanes can be recursively deleted (i.e. the pathnane
hierarchy below a directory can be deleted in one call).
Non-recursive del etions can be perforned only on enpty
directories. Recursive soft-deletions apply the soft-delete to
all of the itens being deleted.

I ndi vidual pathnanmes (or all soft-del eted pathnames under a
directory) can be restored or purged via the restore and purge
met hods.

Providers that support filtering can use the provider "filter" to
identify subsets of itens to delete---this makes nost sense for

24-10

ORACLE

. T

/

procedure del eteFil g(
store_nanme in

path in
filter in
soft_delete in
ctx in

procedure del eteContent(
store_name in
contentID in

filter in
soft_delete in
ctx in

procedure del eteDirectory(
store_name in

path in
filter in
soft_delete in
recurse in
ctx in

procedure restorePath(
store_name in

path in
filter in
ctx in

procedure purgePat h(
store_nanme in

path in
filter in
ctx in

procedure restoreAll(
store_name in

path in
filter in
ctx in

procedure purgeAll(
store_name in

path in
filter in
ctx in

/*

Chapter 24
Creating a Custom Provider

bul k operations (deleteDirectory, restoreAll, purgeAll), but all
of the deletion-related operations accept a "filter" argunent.

Stores/providers that support contentlD based access can al so
allowfile itens to be deleted by specifying their contentID.

varchar 2,

varchar 2,

varchar 2,

i nteger,

dbns_dbfs_content _context _t);

varchar 2,

raw,

varchar 2,

i nteger,

dbns_dbfs_content _context _t);

varchar 2,

varchar 2,

varchar 2,

i nteger,

i nteger,

dbns_dbfs_content _context _t);

varchar 2,
varchar 2,
varchar 2,
dbns_dbfs_content _context _t);

varchar 2,
varchar 2,
varchar 2,
dbns_dbfs_content _context _t);

varchar 2,
varchar 2,
varchar 2,
dbns_dbfs_content _context _t);

varchar 2,
varchar 2,
varchar 2,
dbns_dbfs_content _context _t);

* DBFS SPI: path get/put operations.

*

* Existing path items can be accessed (for query or for update) and

24-11

Chapter 24
Creating a Custom Provider

modi fied via sinple get/put nethods.

Al pathnanmes allow their netadata (i.e. properties) to be
read/ modified. On conpletion of the call, the client can request
(via "prop_flags") specific properties to be fetched as well.

File pathnanes allow their data (i.e. content) to be

read/ nodified. On conpletion of the call, the client can request
(via the "prop_data" bitmks in "prop_flags") a new BLOB | ocat or
that can be used to continue data access.

Files can also be read/witten without using BLOB |ocators, by
explicitly specifying logical offsets/buffer-amunts and a
suitably sized buffer.

Update accesses nust specify the "forUpdate" flag. Access to link
pathnanes can be inplicitly and internally deferenced by stores
(subject to feature support) if the "deref" flag is

speci fied---however, this is dangerous since synbolic links are
not always resol vabl e.

The read nethods (i.e. "getPath" where "forUpdate" is "fal se"

al so accepts a valid "asof" timestanp paranmeter that can be used
by stores to inplenment "as of" style flashback queries. Mitating
versions of the "getPath" and the "putPath" nethods do not
support as-of nodes of operation.

"get PathNowait" inplies a "forUpdate", and, if inplenmented (see
"feature_nowait"), allows providers to return an exception
(ORA-54) rather than wait for row | ocks.

R I T T T

/

procedure get Pat h(

store_name in varchar 2,

path in var char 2,

properties in out nocopy dbns_dbfs_content_properties_t,
cont ent out nocopy bl ob,

itemtype out i nteger,

prop_flags in i nteger,

forUpdate in i nteger,

der ef in i nteger,

ctx in dbns_dbfs_content _context _t);

procedure getPat hNowai t (

store_name in varchar 2,

path in var char 2,

properties in out nocopy dbns_dbfs_content_properties_t,
cont ent out nocopy bl ob,

itemtype out i nteger,

prop_flags in i nteger,

der ef in i nteger,

ctx in dbns_dbfs_content _context _t);

procedure get Pat h(
store_name in varchar 2,
path in varchar 2,
properties in out nocopy dbns_dbfs_content_properties_t,

ORACLE 24-12

ORACLE

amount in out
of f set in
buf f er out nocopy
prop_flags in
ctx in

procedure get Pat h(
store_nanme in
path in
properties in out nocopy
amount in out
of f set in
buffers out nocopy
prop_flags in
ctx in

procedure put Pat h(
store_name in
path in
properties in out nocopy
cont ent in out nocopy
itemtype out
prop_flags in
ctx in

procedure put Pat h(
store_name in
path in
properties in out nocopy
anount in
of f set in
buf f er in
prop_flags in
ctx in

procedure put Pat h(
store_name in
path in
properties in out nocopy
witten out
of f set in
buffers in
prop_flags in
ctx in

I R

Chapter 24
Creating a Custom Provider

nunber,

nunber,

raw,

i nteger,

dbns_dbfs_content _context _t)

var char 2

var char 2

dbns_dbfs_content _properties_t
nunber,

nunber,
dbns_dbfs_content _raw t,

i nteger,

dbns_dbfs_content _context _t)

var char 2

var char 2

dbns_dbfs_content _properties_t
bl ob,

i nteger,

i nteger,

dbns_dbfs_content _context _t)

var char 2

var char 2

dbns_dbfs_content _properties_t
nunber,

nunber,

raw,

i nteger,

dbns_dbfs_content _context _t)

var char 2

var char 2

dbns_dbfs_content _properties_t
nunber,

nunber,
dbns_dbfs_content _raw t,

i nteger,

dbns_dbfs_content _context _t)

DBFS SPI: renane/ nove operations

Pat hnames can be renaned or noved, possibly across directory
hi erarchies and nount-points, but within the same store

Non-directory pathnames previously accessible via "ol dPath" are
renamed as a single itemsubsequently accessible via "newPath"
assuning that "newPath" does not already exist.

If "newPath" exists and is not a directory, the rename inplicitly
del etes the existing itembefore renaming "ol dPath". If "newPath"
exists and is a directory, "ol dPath" is noved into the target

24-13

Chapter 24
Creating a Custom Provider

directory.

Directory pathnanmes previously accessible via "ol dPath" are
renamed by noving the directory and all of its children to

"newPath" (if it does not already exist) or as children of

"newPath" (if it exists and is a directory).

Stores/providers that support contentlD based access and |azy
pat hnane binding al so support the "setPath" nethod that
associates an existing "contentID'" with a new "path".

I

/

procedure renanePat h(

store_name in var char 2,

ol dPat h in varchar 2,

newPat h in varchar 2,

properties in out nocopy dbns_dbfs_content _properties_t,
ctx in dbns_dbfs_content _context _t);

procedure setPat h(

store_name in varchar 2,

contentID in raw,

path in var char 2,

properties in out nocopy dbns_dbfs_content _properties_t,
ctx in dbns_dbfs_content _context _t);

/*
* DBFS SPI: directory navigation and search.
*
* The DBFS APl can list or search the contents of directory
* pathnanes, optionally recursing into sub-directories, optionally
* seeing soft-deleted itens, optionally using flashback "as of" a
* provided tinmestanp, and optionally filtering items in/out within
* the store based on list/search predicates.
*
*/
function Iist(

store_name in varchar 2,

path in varchar 2,

filter in varchar 2,

recurse in i nteger,

ctx in dbns_dbfs_content _context _t)

return dbns_dbfs_content |ist_itens_t
pi pel i ned,;

function sear ch(

store_name in varchar 2,

path in varchar 2,

filter in varchar 2,

recurse in i nteger,

ctx in dbns_dbfs_content _context _t)

return dbns_dbfs_content |ist_itens_t
pi pel i ned,;

ORACLE 24-14

ORACLE

end;
/

I T

pr

pr

o

Chapter 24
Creating a Custom Provider

DBFS SPI: |ocking operations.

Clients of the DBFS APl can apply user-level locks to any valid
pat hnane (subject to store feature support), associate the |ock
with user-data, and subsequently unlock these pathnanes.

The status of locked items is available via various optional

properties (see "opt_lock*" above).

It is the responsibility of the store (assumng it supports
user-defined | ock checking) to ensure that |ock/unlock operations
are performed in a consistent manner.

/

ocedure | ockPat h(

store_name in varchar 2,

path in varchar 2,

lock_type in i nteger,

lock_data in varchar 2,

ctx in dbns_dbfs_content _context _t);
ocedure unl ockPat h(

store_name in varchar 2,

path in varchar 2,

ctx in dbns_dbfs_content _context _t);

DBFS SPI: access checks.

Check if a given pathnane (store_name, path, pathtype) can be
mani pul ated by "operation (see the various
"dbns_dbfs_content. op_xxx" opcodes) by "principal".

This is a convenience function for the DBFS APl; a store that
supports access control still internally perforns these checks to
guarantee security.

/

function checkAccess(

store_name in varchar 2,
path in varchar 2,
pat ht ype in i nteger,

operation in varchar 2,
princi pal in var char 2)

return integer;

show errors;

create or replace public synonymthbfs

for sys.tbfs;

grant execute on thfs

to dbfs_role;

24-15

body.sql

ORACLE

Chapter 24
Creating a Custom Provider

The body. sql script provides the SPI implementation of the tbfs.

The body. sql script:

connect / as sysdba

create or replace package body tbfs

as

o T T . R SRR

Lookup store features (see dbns_dbfs_content.feature_XXX). Lookup
store id.

A store IDidentifies a provider-specific store, across
registrations and mounts, but independent of changes to the store
contents

|.e. changes to the store table(s) should be reflected in the
store 1D, but re-initialization of the same store table(s) should
preserve the store ID.

Provi ders should al so return a "version" (either specific to a
provi der package, or to an individual store) based on a standard
<a.b.c> namng convention (for <major> <minor> and <patch>
conponent s)

/

function get Feat ures(

store_nane in var char 2)
return integer
is
begin
return dbms_dbfs_content.feature_| ocator
end;

function get Storel d(

is

store_nane in var char 2)
return nunber

begin

return 1;

end;

function get Ver si on(

is

store_nane in var char 2)
return varchar?2

begin

return '1.0.0'

end;

/*

* Lookup pathnames by (store_nane, std_guid) or (store_nount,

24-16

ORACLE

Chapter 24
Creating a Custom Provider

std_guid) tuples.

If the underlying "std_guid" is found in the underlying store,
this function returns the store-qualified pathnane.

If the "std_guid" is unknown, a "null" value is returned. Clients
are expected to handle this as appropriate.

R

/

function get Pat hBy St or el d(

store_nane in varchar 2,
guid in i nteger)
return varchar?2

is
begin

rai se dbns_dbfs_content. unsupported_operation;
end;
/

DBFS SPI: space usage.

Clients can query filesystem space usage statistics via the
"spaceUsage()" nethod. Providers are expected to support this
method for their stores (and to make a best effort determination
of space usage---esp. if the store consists of multiple

tabl es/indexes/|obs, etc.).

"bl ksi ze" is the natural tablespace bl ocksize that holds the
store---if multiple tablespaces with different blocksizes are
used, any valid blocksize is acceptable.

"tbytes" is the total size of the store in bytes, and "fhytes" is
the free/unused size of the store in bytes. These val ues are
conputed over all segments that conprise the store.

“nfile", "ndir", "nlink", and "nref" count the nunber of
currently available files, directories, links, and references in
the store.

Since database objects are dynanmically growable, it is not easy
to estimate the division between "free" space and "used" space.

R T S R T

/

procedure spaceUsage(

store_name in varchar 2,
bl ksi ze out i nteger,
tbytes out i nteger,
fbytes out i nteger,
nfile out i nteger,
ndir out i nteger,
nlink out i nteger,
nref out i nteger)
is
nbl ks nunber ;
begin

select count(*) into nfile
fromthbfs.thfst;

24-17

Chapter 24
Creating a Custom Provider

ndir =0
nlink :=0
nr ef =0

sel ect sum(bytes) into thytes
from user_segnents;
sel ect sunm(bl ocks) into nblks
from user_segnents;
bl ksi ze : = thbytes/nblks;
fbytes 0; /* change as needed */
end;

DBFS SPI: notes on pat hnanes.

Al pathnames used in the SPI are store-qualified, i.e. a 2-tuple
of the form (store_nane, pathnane) (where the pathname is rooted
within the store namespace).

Stores/providers that support contentlD based access (see
"feature_content id") also support a formof addressing that is
not based on pathnames. Items are identified by an explicit store
nane, a "null" pathname, and possibly a contentID specified as a
paraneter or via the "opt_content_id" property.

Not all operations are supported with contentlD based access, and
applications should depend only on the sinplest create/delete
functionality being avail able.

I A . R

DBFS SPI: creation operations

The SPI nust allow the DBFS APl to create directory, file, Iink,
and reference el ements (subject to store feature support).

Al of the creation methods require a valid pathname (see the
speci al exenption for contentlD based access bel ow), and can
optional Iy specify properties to be associated with the pathnane
as it is created. It is also possible for clients to fetch-back
itemproperties after the creation conpletes (so that

automatical |y generated properties (e.g. "std_creation_tine") are
imedi ately available to clients (the exact set of properties
fetched back is controlled by the various "prop_xxx" bitmasks in

“prop_flags").

Links and references require an additional pathname to associate
with the primary pathname.

Fil e pathnanes can optionally specify a BLOB value to use to
initially populate the underlying file content (the provided BLOB
may be any valid lob: tenporary or permanent). On creation, the
underlying lob is returned to the client (if "prop_data" is

R T T

ORACLE 24-18

Chapter 24
Creating a Custom Provider

specified in "prop_flags").

Non-directory pathnanes require that their parent directory be
created first. Directory pathnanes thensel ves can be recursively
created (i.e. the pathnane hierarchy leading up to a directory
can be created in one call).

Attenpts to create paths that already exist is an error; the one
exception is pathnanes that are "soft-del eted" (see below for
del ete operations)---in these cases, the soft-deleted itemis
implicitly purged, and the newitemcreation is attenpted.

Stores/providers that support contentlD based access accept an
explicit store name and a "null" path to create a new el enent.
The content|D generated for this element is available via the
"opt _content _id" property (contentlD-based creation automatically
implies "prop_opt" in "prop_flags").

The newly created el enent may al so have an internally generated
pathnane (if "feature_|lazy_path" is not supported) and this path
is available via the "std_canonical _path" property.

Only file elenents are candidates for contentlD based access.

R T T e T T

/

procedure createFil e(

store_name in varchar 2,
path in var char 2,
properties in out nocopy dbns_dbfs_content_properties_t,
cont ent in out nocopy blob,
prop_flags in i nteger,
ctx in dbns_dbfs_content _context _t)
is
gui d nunber ;
begin

if (path ="'/") then
rai se dbns_dbfs_content.invalid_path;
end if;

if content is null then
content := enpty_blob();
end if;

begin
insert into thfs.tbfst values (substr(path,2), content)
returning data into content;
exception
when dup_val _on_index then
rai se dbns_dbfs_content. path_exi sts;
end;

sel ect ora_hash(path) into guid fromdual;

properties := dbns_dbfs_content _properties_t(
dbns_dbfs_content _property_t(
"std:length',
to_char (dbns_| ob. getl ength(content)),
dbns_t ypes. TYPECODE_NUMBER) ,

ORACLE 24-19

ORACLE

dbns_dbfs_content _property_t(
"std:guid',
to_char(guid),
dbns_t ypes. TYPECODE_NUMBER)) ;
end;

procedure createli nk(

Chapter 24
Creating a Custom Provider

store_nanme in var char 2,
srcPath in varchar 2,
dst Pat h in varchar 2,
properties in out nocopy dbns_dbfs_content_properties_t,
prop_flags in i nteger,
ctx in dbns_dbfs_content _context _t)
is
begin

rai se dbns_dbfs_content. unsupported_operation;
end;

procedure createReference(

store_name in var char 2,
srcPath in varchar 2,
dst Pat h in varchar 2,
properties in out nocopy dbns_dbfs_content_properties_t,
prop_flags in i nteger,
ctx in dbns_dbfs_content _context _t)
is
begin

rai se dbns_dbfs_content. unsupported_operation;
end;

procedure createDirectory(

store_name in varchar 2,
path in var char 2,
properties in out nocopy dbns_dbfs_content_properties_t,
prop_flags in i nteger,
recurse in i nteger,
ctx in dbns_dbfs_content _context _t)
is
begin

rai se dbns_dbfs_content. unsupport ed_operation;
end;

/*

* DBFS SPI: del etion operations

*

* The SPI nust allow the DBFS APl to delete directory, file, link,
* and reference elements (subject to store feature support).

*

*

* By default, the deletions are "permanent" (get rid of the

* successfully deleted items on transaction commit), but stores may
* also support "soft-delete" features. If requested by the client,
* soft-deleted itens are retained by the store (but not typically
* visible in normal listings or searches).

*

* Soft-deleted itens can be "restore"d, or explicitly purged.

*

*

*

Directory pathnanmes can be recursively deleted (i.e.

t he pat hname

24-20

ORACLE

R R T R S

Chapter 24
Creating a Custom Provider

hierarchy below a directory can be deleted in one call).
Non-recursive del etions can be perforned only on enpty
directories. Recursive soft-deletions apply the soft-delete to
all of the itens being deleted.

I ndi vidual pathnanmes (or all soft-del eted pathnames under a
directory) can be restored or purged via the restore and purge
met hods.

Providers that support filtering can use the provider "filter" to
identify subsets of itens to delete---this makes nost sense for
bul k operations (deleteDirectory, restoreAll, purgeAll), but all
of the deletion-related operations accept a "filter" argunent.

Stores/providers that support contentlD based access can al so
allowfile itens to be deleted by specifying their contentID.

procedure del eteFil g(

store_name in varchar 2,
path in varchar 2,
filter in varchar 2,
soft_delete in i nteger,
ctx in dbns_dbfs_content _context _t)
is
begin
if (path ="'/") then
rai se dbns_dbfs_content.invalid_path;
end if;
if ((soft_delete <> 0) or
(filter is not null)) then
rai se dbns_dbfs_content. unsupported_operation;
end if;
delete fromtbfs.tbfst t
where ('/' || t.key) = path;
if sgl %owcount <> 1 then
rai se dbns_dbfs_content.invalid_path;
end if;
end;

procedure del eteContent(

store_name in varchar 2,

contentID in raw,

filter in varchar 2,

soft_delete in i nteger,

ctx in dbns_dbfs_content _context _t)
is
begin

rai se dbns_dbfs_cont ent. unsupported_operation;
end;

procedure del eteDirectory(

store_name in varchar 2,
path in varchar 2,

24-21

ORACLE

Chapter 24
Creating a Custom Provider

varchar 2,

i nteger,

i nteger,

dbns_dbfs_content _context _t)

rai se dbns_dbfs_content. unsupport ed_operation;

filter in
soft_delete in
recurse in
ctx in

is

begin

end;

procedure restorePath(

store_nanme in

varchar 2,
varchar 2,
varchar 2,
dbns_dbfs_content _context _t)

rai se dbns_dbfs_content. unsupported_operation;

path in
filter in
ctx in

is

begin

end;

procedure purgePat h(

store_name in

varchar 2,
varchar 2,
varchar 2,
dbns_dbfs_content _context _t)

rai se dbns_dbfs_content. unsupported_operation;

path in
filter in
ctx in

is

begin

end;

procedure restoreAll(

store_name in

varchar 2,
varchar 2,
varchar 2,
dbns_dbfs_content _context _t)

rai se dbns_dbfs_content. unsupported_operation;

path in
filter in
ctx in

is

begin

end;

procedure purgeAll(

store_name in

varchar 2,
varchar 2,
varchar 2,
dbns_dbfs_content _context _t)

rai se dbns_dbfs_content. unsupported_operation;

Exi sting path itens can be accessed (for query or for update) and

Al pathnanmes allow their netadata (i.e. properties) to be
read/ modified. On conpletion of the call, the client can request

path in
filter in
ctx in
is
begin
end;
/*
* DBFS SPI: path get/put operations.
*
*
* modified via sinple get/put nethods.
*
*
*
*
*

(via "prop_flags") specific properties to be fetched as well.

24-22

ORACLE

T T R

Chapter 24
Creating a Custom Provider

File pathnanes allow their data (i.e. content) to be

read/ nodified. On conpletion of the call, the client can request
(via the "prop_data" bitmaks in "prop_flags") a new BLOB | ocat or
that can be used to continue data access.

Files can also be read/witten without using BLOB |ocators, by
explicitly specifying logical offsets/buffer-amunts and a
suitably sized buffer.

Update accesses nust specify the "forUpdate" flag. Access to link
pathnanes can be inplicitly and internally deferenced by stores
(subject to feature support) if the "deref" flag is

speci fied---however, this is dangerous since synbolic links are
not always resol vabl e.

The read nethods (i.e. "getPath" where "forUpdate" is "fal se"

al so accepts a valid "asof" timestanp paranmeter that can be used
by stores to inplenment "as of" style flashback queries. Mitating
versions of the "getPath" and the "putPath" nethods do not
support as-of nodes of operation.

"get Pat hNowait" inplies a "forUpdate", and, if inplenented (see
"feature_nowait"), allows providers to return an exception
(ORA-54) rather than wait for row | ocks.

/

procedure get Pat h(
store_name in varchar 2,
path in var char 2,
properties in out nocopy dbns_dbfs_content_properties_t,
cont ent out nocopy bl ob,
itemtype out i nteger,
prop_flags in i nteger,
forUpdate in i nteger,
der ef in i nteger,
ctx in dbns_dbfs_content _context _t)
is
gui d nunber ;
begin

if (deref <> 0) then
rai se dbns_dbfs_content. unsupported_operation;
end if;

sel ect ora_hash(path) into guid fromdual;
if (path ="'/") then

if (forUpdate <> 0) then
rai se dbns_dbfs_content. unsupported_operation;

end if;
cont ent = null;
itemtype := dbns_dbfs_content.type_directory;

properties := dbns_dbfs_content _properties_t(
dbns_dbfs_content _property_t(

"std:guid',

to_char(guid),

dbns_t ypes. TYPECODE_NUMBER)) ;

24-23

ORACLE

end;

Chapter 24
Creating a Custom Provider

return;
end if;

begin
if (forUpdate <> 0) then
select t.data into content fromthfs.thfst t
where ('/' || t.key) = path
for update;
el se
select t.data into content fromthfs.thfst t
where ('/' || t.key) = path;
end if;
exception
when no_data_found then
rai se dbns_dbfs_content.invalid_path;
end;

itemtype := dbns_dbfs_content.type file;
properties := dbns_dbfs_content _properties_t(
dbns_dbfs_content _property_t(
"std:length',
to_char (dbns_| ob. getl ength(content)),
dbns_t ypes. TYPECODE_NUMBER) ,
dbns_dbfs_content _property_t(
"std:guid,
to_char(guid),
dbns_t ypes. TYPECODE_NUMBER)) ;

procedure getPat hNowai t (

store_name in varchar 2,
path in varchar 2,
properties in out nocopy dbns_dbfs_content_properties_t,
cont ent out nocopy bl ob,
itemtype out i nteger,
prop_flags in i nteger,
der ef in i nteger,
ctx in dbns_dbfs_content _context _t)
is
begin
rai se dbns_dbfs_content. unsupport ed_operation;
end;

procedure get Pat h(

store_name in varchar 2,

path in varchar 2,

properties in out nocopy dbns_dbfs_content_properties_t,

anount in out nunber,

of f set in nunber,

buf fer out nocopy raw,

prop_flags in i nteger,

ctx in dbns_dbfs_content _context _t)
is

cont ent bl ob;

gui d nunber ;
begin

if (path ="'/") then
rai se dbns_dbfs_content. unsupported_operation;
end if;

24-24

ORACLE

end;

begin
select t.data into content fromthfs.thfst t
where ('/' || t.key) = path;
exception
when no_data_found then
rai se dbns_dbfs_content.invalid_path;
end;

sel ect ora_hash(path) into guid fromdual;
dbns_| ob. read(content, amount, offset, buffer);

properties := dbns_dbfs_content _properties_t(
dbns_dbfs_content _property_t(
"std:length',
to_char (dbns_| ob. getl ength(content)),
dbns_t ypes. TYPECODE_NUMBER) ,
dbns_dbfs_content _property_t(
"std:guid,
to_char(guid),
dbns_t ypes. TYPECODE_NUMBER)) ;

procedure get Pat h(

is
begi

end;

Chapter 24
Creating a Custom Provider

store_name in varchar 2,

path in var char 2,

properties in out nocopy dbns_dbfs_content_properties_t,
amount in out nunber,

of f set in nunber,

buffers out nocopy dbns_dbfs_content _raw t,
prop_flags in i nteger,

ctx in dbns_dbfs_content _context _t)

n

rai se dbns_dbfs_content. unsupported_operation;

procedure put Pat h(

begi

store_name in varchar 2,

path in var char 2,

properties in out nocopy dbns_dbfs_content_properties_t,
cont ent in out nocopy blob,

itemtype out i nteger,

prop_flags in i nteger,

ctx in dbns_dbfs_content _context _t)
gui d nunber ;

n

if (path ="'/") then
rai se dbns_dbfs_content. unsupported_operation;
end if;

if content is null then
content := enpty_blob();
end if;

update thfs.thfst t
set t.data = content
where ('/' || t.key) = path
returning t.data into content;

if sgl %owcount <> 1 then

24-25

ORACLE

end;

Chapter 24
Creating a Custom Provider

rai se dbns_dbfs_content.invalid_path;
end if;

sel ect ora_hash(path) into guid fromdual;

itemtype := dbns_dbfs_content.type file;
properties := dbns_dbfs_content _properties_t(
dbns_dbfs_content _property_t(
"std:length',
to_char (dbns_| ob. getl ength(content)),
dbns_t ypes. TYPECODE_NUMBER) ,
dbns_dbfs_content _property_t(
"std:guid,
to_char(guid),
dbns_t ypes. TYPECODE_NUMBER)) ;

procedure put Pat h(

begi

end;

store_name in varchar 2,

path in var char 2,

properties in out nocopy dbns_dbfs_content_properties_t,
anount in nunber,

of f set in nunber,

buf fer in raw,

prop_flags in i nteger,

ctx in dbns_dbfs_content _context _t)
cont ent bl ob;

gui d nunber ;

n

if (path ="'/") then
rai se dbns_dbfs_content. unsupported_operation;
end if;

begin
select t.data into content fromthfs.thfst t
where ('/' || t.key) = path
for update;
exception
when no_data_found then
rai se dbns_dbfs_content.invalid_path;
end;

sel ect ora_hash(path) into guid fromdual;
dbns_l ob. write(content, amount, offset, buffer);

properties := dbns_dbfs_content _properties_t(
dbns_dbfs_content _property_t(
"std:length',
to_char (dbns_| ob. getl ength(content)),
dbns_t ypes. TYPECODE_NUMBER) ,
dbns_dbfs_content _property_t(
"std:guid',
to_char(guid),
dbns_t ypes. TYPECODE_NUMBER)) ;

procedure put Pat h(

store_name in varchar 2,
path in varchar 2,
properties in out nocopy dbns_dbfs_content_properties_t,

24-26

ORACLE

Chapter 24
Creating a Custom Provider

witten out number,
of f set in nunber,
buffers in dbns_dbfs_content _raw t,
prop_flags in i nteger,
ctx in dbns_dbfs_content _context _t)
is
begin
rai se dbns_dbfs_content. unsupported_operation;
end;
/

R T T . S R

DBFS SPI: renane/ nove operations.

Pat hnames can be renanmed or noved, possibly across directory
hi erarchies and nount-points, but within the same store.

Non-directory pathnames previously accessible via "ol dPath" are
renamed as a single itemsubsequently accessible via "newPath";
assuning that "newPath" does not already exist.

If "newPath" exists and is not a directory, the rename inplicitly
del etes the existing itembefore renaming "ol dPath". If "newPath"
exists and is a directory, "ol dPath" is noved into the target
directory.

Directory pathnanes previously accessible via "ol dPath" are
renamed by noving the directory and all of its children to

"newPath" (if it does not already exist) or as children of

"newPath" (if it exists and is a directory).

Stores/providers that support contentlD based access and |azy
pat hnane binding al so support the "setPath" nethod that
associates an existing "contentID'" with a new "path".

procedure renanePat h(

store_name in varchar 2,
ol dPat h in varchar 2,
newPat h in varchar 2,
properties in out nocopy dbns_dbfs_content_properties_t,
ctx in dbns_dbfs_content _context _t)
is
begin
rai se dbns_dbfs_content. unsupported_operation;
end;

procedure setPat h(

store_name in varchar 2,
contentID in raw,
path in var char 2,
properties in out nocopy dbns_dbfs_content_properties_t,
ctx in dbns_dbfs_content _context _t)
is
begin

rai se dbns_dbfs_content. unsupported_operation;

24-27

ORACLE

Chapter 24
Creating a Custom Provider

end;

/*

* DBFS SPI: directory navigation and search.

*

* The DBFS APl can list or search the contents of directory

* pathnanes, optionally recursing into sub-directories, optionally
* seeing soft-deleted itens, optionally using flashback "as of" a
* provided tinmestanp, and optionally filtering items in/out within
* the store based on list/search predicates.

*

*

/

function Iist(
store_name in varchar 2,
path in var char 2,
filter in var char 2,
recurse in i nteger,
ctx in dbns_dbfs_content _context _t)
return dbns_dbfs_content |ist_itens_t
pi pel i ned
is
begin
for rws in (select * fromthfs.tbfst)
| oop
pi pe row(dbns_dbfs_content |ist_itemt(
"I] rws.key, rws.key, dbns_dbfs _content.type_file));
end | oop;
end;

function sear ch(

store_nanme in var char 2,

path in varchar 2,

filter in varchar 2,

recurse in i nteger,

ctx in dbns_dbfs_content _context _t)

return dbns_dbfs_content |ist_itens_t
pi pel i ned

is
begin

rai se dbns_dbfs_content. unsupport ed_operation;
end;
/*
* DBFS SPI: |ocking operations.
*
* Clients of the DBFS APl can apply user-level locks to any valid
* pathnane (subject to store feature support), associate the |ock
* with user-data, and subsequently unlock these pathnames.
*
* The status of locked itens is available via various optional
* properties (see "opt_lock*" above).
*
*
* |t is the responsibility of the store (assuming it supports
* user-defined I ock checking) to ensure that |ock/unlock operations
*

are perfornmed in a consistent manner.

24-28

capi.sq

ORACLE

end;
/

Chapter 24
Creating a Custom Provider

*

*/
procedure | ockPat h(
store_name in varchar 2,
path in varchar 2,
lock_type in i nteger,
lock_data in varchar 2,
ctx in dbns_dbfs_content _context _t)
is
begin
rai se dbns_dbfs_content. unsupported_operation;
end;

procedure unl ockPat h(

store_name in varchar 2,
path in varchar 2,
ctx in dbns_dbfs_content _context _t)
is
begin
rai se dbns_dbfs_content. unsupported_operation;
end;
/*
* DBFS SPI: access checks.
*
* Check if a given pathnane (store_name, path, pathtype) can be
* mani pul ated by "operation (see the various
* "dbns_dbfs_content. op_xxx" opcodes) by "principal".
*
* This is a convenience function for the DBFS APl; a store that
* supports access control still internally perforns these checks to
* guarantee security.
*
*

/

function checkAccess(

store_name in var char 2,
path in varchar 2,
pat ht ype in i nteger,
operation in varchar 2,
princi pal in var char 2)
return integer

is

begin
return 1;

end;

show errors;

The capi . sql script registers and mounts the DBFS.

The capi . sql script:

connect tbfs/tbfs;

24-29

Chapter 24
Creating a Custom Provider

exec dbns_dbfs_content.registerStore(' M_TBFS', 'table', 'TBFS');
exec dbns_dbfs_content. nount Store(' MY_TBFS', singleton => true);
comit;

ORACLE 24-30

Using DBFS

The DBFS File System implementation includes creating and accessing the file system
and managing it.

Topics:

* DBFS Installation

e Creating a DBFS File System

* DBFS File System Access

* DBFS Administration

» Shrinking and Reorganizing DBFS Filesystems

DBFS Installation

DBFS is a part of the Oracle database installation and is installed under ORACLE_HOME.
$ORACLE_HOME/ r dbns/ adni n contains these DBFS utility scripts:

e Content API (CAPI)
e SecureFiles Store (SFS)
$ORACLE_HOVE/ bi n contains:

- dbfs_client executable
$ORACLE_HOMVE/ r dbns/ adni n contains:

* SQL (. pl b extension) scripts for the content store

Creating a DBFS File System

A DBFS File system can be partitioned or non-partitioned. It may require users to have
certain privileges.

Topics:

* Privileges Required to Create a DBFS File System

* Advantages of Non-Partitioned Versus Partitioned DBFS File Systems
e Creating a Non-Partitioned File System

* Creating a Partitioned File System

* Dropping a File System

Privileges Required to Create a DBFS File System

Database users must have a minimum set of privileges to create a file system.

ORACLE 25-1

Chapter 25
Creating a DBFS File System

Users must have these privileges:
e GRANT CONNECT

e CREATE SESSI ON

* RESOURCE, CREATE TABLE

» CREATE PROCEDURE

» DBFS_ROLE

Advantages of Non-Partitioned Versus Partitioned DBFS File Systems

You can create either non-partitioned or partitioned file systems. Partitioning is the
best performing and most scalable way to create a file system in DBFS and is the
default.

Space cannot be shared between partitions, so it is possible for one partition to run out
of space even when other partitions have space. This is usually not an issue if the file
system size is big compared to the size of the individual files. However, if file sizes are
a big percentage of the file system size, it may result in the ENOSPC error even if the file
system is not full.

Another implication of partitioning is that a rename operation can require rewriting the
file, which can be expensive if the file is big.

Creating a Non-Partitioned File System

You can create a file system by running DBFS_CREATE_FI LESYSTEM SQL while logged in
as a user with DBFS administrator privileges.

These steps enable you to create a file system.

1. Log in to the database instance:
$ sqgl plus dbfs_user/ @b_server
2. Enter the following command:

@ORACLE_HOMVE/ r dbns/ admi n/ dbfs_create_fil esystem sqgl tabl espace_nane
file_systemnnanme

For example, to create a file system called st agi ng_ar ea in an existing tablespace
dbfs_tbspc:

$ sqgl plus dbfs_user/db_server
@ ORACLE_HOVE/ r dbns/ admi n/ dbfs_create_fil esystem sql
dbfs_tbspc staging_area

Creating a Partitioned File System

ORACLE

Partitioning creates multiple physical segments in the database, and files are
distributed randomly in these partitions.

You can create a partitioned file system by running
DBFS_CREATE_FI LESYSTEM ADVANCED.SQL while logged in as a user with DBFS
administrator privileges.

1. Log in to the database instance:

25-2

Chapter 25
DBFS File System Access

$ sql plus dbfs_user/ @b_server
Enter the following command:

@ORACLE_HOWE/ r dbrs/ admi n/ dbfs_create_fil esystem advanced. sql tabl espace_nane
file_system nane noconpress nodeduplicate noencrypt partition

For example, to create a partitioned file system called st agi ng_ar ea in an existing
tablespace dbfs_t bspc:

$ sqgl plus dbfs_user/ @b_server

@ORACLE_HOVE/ r dbns/ admi n/ dbfs_create_fil esystem advanced. sql dbfs_t bspc
stagi ng_area noconpress nodedupl i cate noencrypt partition

Dropping a File System

You can drop a file system by running DBFS_DROP_FI LESYSTEM SQL.

1.

Log in to the database instance:
$ sql plus dbfs_user/ @b_server
Enter the following command:

@ORACLE_HOVE/ r dbrs/ admi n/ dbfs_drop_filesystemsqgl file_system nanme

DBFS File System Access

You access a DBFS file system by means of prerequisites, access interfaces, the
DBFS security model, and XML DB server protocols.

Topics:

DBFS Client Prerequisites

DBFS Client Command-Line Interface Operations
DBFS Mounting Interface (Linux and Solaris Only)
File System Security Model

HTTP_ WebDAV_ and FTP Access to DBFS

DBFS Client Prerequisites

The DBFS File System Client, which is named dbfs_cl i ent, runs on each system that
will access DBFS filesystems, using certain prerequisites.

ORACLE

The prerequisites for the DBFS File System Client, dbfs_cl i ent, are:

The dbfs_cl i ent host must have the Oracle client libraries installed.

The dbfs_client can be used as a direct RDBMS client using the DBFS
Command Interface on Linux, Linux.X64, Solaris, Solaris64, AlX, HPUX and
Windows platforms.

The dbfs_client can only be used as a mount client on Linux, Linux.X64, and
Solaris 11 platforms. This requires the following:

— dbfs_client host must have the FUSE Linux package or the Solaris | i bf use
package installed.

25-3

Chapter 25
DBFS File System Access

— A group named f use must be created, with the user name that runs the
dbfs_client as a member.

¢ See Also:

DBFS Mounting Interface (Linux and Solaris Only) for further details.

DBFS Client Command-Line Interface Operations

The DBFS client command-line interface allows you to directly access files stored in
DBFS.

Topics:

* About the DBFS Client Command-Line Interface
» Creating Content Store Paths

e Creating a Directory

» Listing a Directory

e Copying Files and Directories

* Removing Files and Directories

About the DBFS Client Command-Line Interface

The DBFS client command-line interface allows you to perform many pre-defined
commands, such as copy files in and out of the DBFS filesystem from any host on the
network.

The command-line interface has slightly better performance than the DBFS client
mount interface because it does not mount the file system, thus bypassing the user
space file system. However, it is not transparent to applications.

The DBFS client mount interface allows DBFS to be mounted through a file system
mount point thus providing transparent access to files stored in DBFS with generic file
system operations.

To run DBFS commands, specify - - command to the DBFS client.

Creating Content Store Paths

ORACLE

You can create a content store path by providing a path name

All DBFS content store paths must be preceded by dbfs: .This is an example: dbfs: /
staging_areal fil el. All database path names specified must be absolute paths.

dbfs_client db_user@b_server --command command [switches] [arguments]
where:

e conmmand is the executable command, such as | s, cp, nkdir, orrm

e switches are specific for each command.

25-4

Chapter 25
DBFS File System Access

« argunents are file names or directory names, and are specific for each command.

Note that dbfs_cl i ent returns a nonzero value in case of failure.

Creating a Directory

You can use the nkdi r command to create a new directory.
Use this syntax:

dbfs_client db_user@b_server --command nkdir directory_name
where:

e directory_nane is the name of the directory created. For example:

$ dbfs_client ETLUser @BConnect String --command nkdir dbfs:/staging_area/dirl

Listing a Directory

You can use the | s command to list the contents of a directory.
Use this syntax:

dbfs_client db_user@b_server --command |s [switches] target

where

e target is the listed directory.
e switches is any combination of the following:

— -ashows all files, including . "*and ". . ".

— -1 shows the long listing format: name of each file, the file type, permissions,
and size.

— - Rlists subdirectories recursively.
For example:

$ dbfs_client ETLUser @BConnect String --command |s dbfs:/staging_area/dirl

or

$ dbfs_client ETLUser @BConnect String --command |s -1 -a -R dbfs:/staging_area/dirl

Copying Files and Directories

ORACLE

You can use the cp command to copy files or directories from the source location to
the destination location.

The cp command also supports recursive copy of directories.
dbfs_client db_user@b_server --command cp [switches] source destination
where:

e source is the source location.

« destination is the destination location.

25-5

Chapter 25
DBFS File System Access

e switches is either - Ror -r, the options to recursively copy all source contents into
the destination directory.

The following example copies the contents of the local directory, 01- 01- 10- dunp
recursively into a directory in DBFS:

$ dbfs_client ETLUser @BConnect String --command cp -R 01-01-10-dunp dbfs:/staging_area/

The following example copies the file hel | 0. t xt from DBFS to a local file H . t xt :

$ dbfs_client ETLUser @BConnect String --command cp dbfs:/staging_area/hello.txt H.txt

Removing Files and Directories

You can use the command r mto delete a file or directory.
The command r malso supports recursive delete of directories.

dbfs_client db_user@hb_server --command rm[switches] target

where:

e target is the listed directory.

* switches is either - Ror - r, the options to recursively delete all contents.
For example:

$ dbfs_client ETLUser @BConnect String --command rm dbfs:/staging_areal/srcdir/hello.txt

or

$ dbfs_client ETLUser @BConnect String --command rm-R dbfs:/staging_area/dirl

DBFS Mounting Interface (Linux and Solaris Only)

ORACLE

You can mount DBFS using the dbf s_cl i ent in Linux and Solaris only.
The instructions indicate the different requirements for the Linux and Solaris platforms.
Topics:

e Installing FUSE on Solaris 11 SRU7 and Later

* Mounting the DBFS Store

» Solaris-Specific Privileges

* About the Mount Command for Solaris and Linux

* Mounting a File System with a Wallet

* Mounting a File System with Password at Command Prompt

* Mounting a File System with Password Read from a File

e Unmounting a File System

e Mounting DBFS Through fstab Utility for Linux

* Mounting DBFS Through the vfstab Utility for Solaris

* Restrictions on Mounted File Systems

* Restrictions on Types of Files Stored at DBFS Mount Points

25-6

Chapter 25
DBFS File System Access

Installing FUSE on Solaris 11 SRU7 and Later

You can use dbf s_cl i ent as a mount client in Solaris 11 SRU7 and later, if you install
FUSE

Install FUSE to use dbfs_cl i ent as a mount client in Solaris 11 SRU7 and later.

* Run the following package as r oot .

pkg install |ibfuse

Mounting the DBFS Store

You can mount the DBFS store by running the dbf s_cl i ent program.
To run the dbfs_cl i ent program.

1. Ensure that LD LI BRARY_PATH has the correct path to the Oracle client libraries.
2. Runthe dbfs_client program.

The dbfs_cl i ent program does not return until the file system is unmounted.

¢ See Also:

Using Oracle Wallet with DBFS Client for the most secure method of
specifying the password

Solaris-Specific Privileges

On Solaris, the user must have the Solaris privilege PRI V_SYS_MOUNT to perform mount
and unmount operations on DBFS filesystems.

Give the user the Solaris privilege PRI V_SYS MOUNT .
1. Edit/etc/user _attr.

2. Add or modify the user entry (assuming the user is Oracle) as follows:

oracle::::type=normal ; proj ect =group. dba; def aul t pri v=basi c, priv_sys_nount;;auth
s=sol aris.snf.*

About the Mount Command for Solaris and Linux

ORACLE

The dbf s_cl i ent mount command for Solaris and Linux uses specific syntax.
Syntax:

dbfs_client db_user@b_server [-0 option_1 -0 option_2 ...] nmount_point
where the mandatory parameters are:

* db_user is the name of the database user who owns the DBFS content store file
system.

25-7

Chapter 25
DBFS File System Access

db_server is a valid connect string to the Oracle Database server, such as
hrdb_host: 1521/ hr servi ce.

mount _poi nt is the path where the Database File System is mounted. Note that all
file systems owned by the database user are visible at the mount point.

The options are:

direct _i o: To bypass the OS page cache and provide improved performance for
large files. Programs in the file system cannot be executed with this option. Oracle
recommends this option when DBFS is used as an ETL staging area.

wal | et : To run the DBFS client in the background. The Wallet must be configured
to get its credentials.

fail over: To fail over the DBFS client to surviving database instances without
data loss. Expect some performance cost on writes, especially for small files.

al | ow_root: To allow the root user to access the filesystem. You must set the
user _al | ow ot her parameter in the / et ¢/ f use. conf configuration file.

al | ow_ot her: To allow other users to access the filesystem. You must set the
user _al | ow ot her parameter in the / et ¢/ f use. conf configuration file.

rw. To mount the filesystem as read-write. This is the default setting.
ro: To mount the filesystem as read-only. Files cannot be modified.
trace_l evel =n sets the trace level. Trace levels are:

— 1 DEBUG

— 2 INFO

— 3 WARNI NG

— 4 ERROR The default tracing level. It outputs diagnostic information only when
an error happens. It is recommended that this tracing level is always enabled.

- 5 CRITICAL

trace_fil e=STR: Specifies the tracing log file, where STR can be either a
file_name or sysl og.

trace_size=trcfile_size: Specifies size of the trace file in MB. By default,
dbfs_client rotates tracing output between two 10MB files. Specifying 0 for
trace_si ze sets the maximum size of the trace file to unlimited.

Mounting a File System with a Wallet

ORACLE

You can mount a file system with a wallet after configuring various environment
variables.

You must first configure the LD LI BRARY_PATH and ORACLE_HOME environment variables
correctly before mounting a file system with a wallet.

1.
2.

Login as admin user.

Mount the DBFS store. (Oracle recommends that you do not perform this step as
root user.)

% dbfs_client @dbfsdb -0 wallet,rw user,direct_io /mt/dbfs

25-8

Chapter 25
DBFS File System Access

3. [Optional] To test if the previous step was successful, as admin user, list the dbf s
directory.

$ |Is /mt/tdbfs

¢ See Also:
Using Oracle Wallet with DBFS Client

Mounting a File System with Password at Command Prompt

You can mount a file system using dbfs_client.

You must enter a password on the command prompt to mount a file system using
dbfs client.

* Run the following:

$ dbfs_client ETLUser @BConnect String /mt/dbfs
password: XXXXXXX

Mounting a File System with Password Read from a File

You can mount a file system with a password read from a file.

The following example mounts a file system and frees the terminal. It reads the
password from a file:

* Run the following:

$ nohup dbfs_client ETLUser @BConnectString /mt/dbfs < passwordfile.f &
$1s -1 /mt/dbfs
drwxrwxrwx 10 root root O Feb 9 17:28 staging_area

Unmounting a File System
In Linux, you can run f user mount to unmount file systems.
To run f user mount in Linux, do the following:

e Run the following:

$ fusernount -u <mount point>
In Solaris, you can run unmount to unmount file systems.
* Run the following:

$ unount -u <mount poi nt>

ORACLE 25-9

Chapter 25
DBFS File System Access

Mounting DBFS Through fstab Utility for Linux

In Linux, you can configure f st ab utility to use dbfs_cl i ent to mount a DBFS
filesystem.

To mount DBFS through / et ¢/ f st ab, you must use Oracle Wallet for authentication.

1. Login asroot user.
2. Change the user and group of dbfs_cl i ent to user root and group f use.
chown root. fuse $ORACLE_HOVE bin/ dbfs_client

3. Setthe setuid biton dbfs_client and restrict execut e privileges to the user and
group only.

chnod u+rwxs, g+rx-w, o-rwx dbfs_client
4. Create a symbolic link to dbfs_client in/shin as "nount. dbfs".
$ In -s $ORACLE_HOWE bi n/ dbfs_client /shin/nount.dbfs
5. Create a new Linux group called "f use".
6. Add the Linux user that is running the DBFS Client to the f use group.
7. Add the following line to / et ¢/ f st ab:

/ sbi n/ mount . dbf s#db_user @b_server nount_point fuse rw, user,noauto 0 0

For example:
[sbi n/ mount . dbf s#/ @BConnect String /mt/dbfs fuse rw user,noauto 0 0

8. The Linux user can mount the DBFS file system using the standard Linux nount
command. For example:

$ mount /mt/dbfs

Note that FUSE does not currently support aut omount .

Mounting DBFS Through the vfstab Utility for Solaris

ORACLE

On Solaris, file systems are commonly configured using the vf st ab utility.

1. Create a mount shell script nount _dbf s. sh to use to start dbfs_cl i ent. All the
environment variables that are required for Oracle RDBMS must be exported.
These environment variables include TNS_ADM N, ORACLE_HOME, and
LD_LI BRARY_PATH. For example:

#!/ bi n/ ksh

export TNS_ADM N=/ export/hone/ or acl e/ dbf s/t nsadni n

export ORACLE_HOVE=/ export/home/ oracl e/ 11. 2. 0/ dbhone_1

export DBFS_USER=dbfs_user

export DBFS_PASSWD=/t np/ passwd. f

export DBFS_DB CONN=dbfs_db

export O=$ORACLE_HOVE

export LD LI BRARY_PATH=$Q/ i b: $Q' rdbns/ i b:/usr/lib:/1ib:$LD LI BRARY_PATH
export NOHUP_LOG=/t np/ dbf s. nohup

(nohup $ORACLE_HOVE/ bi n/ dbfs_client $DBFS_USER@DBFS DB CONN < $DBFS_PASSWD
2>81 &) &

25-10

2.

Chapter 25
DBFS File System Access

Add an entry for DBFS to / et ¢/ vf st ab. Specify the nount _dbf s. sh script for the
devi ce_to_nount . Specify uvf s for the FS_t ype. Specify no f or rount _at _boot .
Specify mount options as needed. For example:

[usr/local /bin/mount_dbfs.sh - /mt/dbfs uvfs - no rw, al | ow_ot her

User can mount the DBFS file system using the standard Solaris mount command.
For example:

$ mount /mt/dbfs

User can unmount the DBFS file system using the standard Solaris umount
command. For example:

$ umount /mt/dbfs

Restrictions on Mounted File Systems

DBFS supports most file system operations with exceptions. Exceptions are:

ioctl

range locking (file locking is supported)
asynchronous 1/O through | i bai o

O DI RECT file opens

hard links, pipes

other special file modes

Memory-mapped files are supported except in shared-writable mode. For performance
reasons, DBFS does not update the file access time every time file data or the file data
attributes are read.

You cannot run programs from a DBFS-mounted file system if the di rect i o option is
specified.

Oracle does not support exporting DBFS file systems using NFS or Samba.

Restrictions on Types of Files Stored at DBFS Mount Points

ORACLE

Only text files used by ETL jobs can be stored at the DBFS mount points.

Following file types cannot be stored at the DBFS mount points:

RMAN backup pieces.

RMAN copy files.

Any database files.

Datapump files.

Executable binaries.

Output files generated by SQL* Plus SPOOL command.

trace files generated by processes running on the database (foreground,
background, listeners).

25-11

Chapter 25
DBFS File System Access

File System Security Model

The database manages security in DBFS. It does not use the operating system
security model.

» About the File System Security Model

* Enabling Shared Root Access

» About DBFS Access Among Multiple Database Users

» Establishing DBFS Access Sharing Across Multiple Database Users

About the File System Security Model

DBFS operates under a security model where all file systems created by a user are
private to that user, by default.

Oracle recommends maintaining this model. Because operating system users and
Oracle Database users are different, it is possible to allow multiple operating system
users to mount a single DBFS filesystem. These mounts may potentially have different
mount options and permissions. For example, user 1 may mount a DBFS filesystem as
READ ONLY, and user 2 may mount it as READ WRI TE. However, Oracle Database views
both users as having the same privileges because they would be accessing the
filesystem as the same database user.

Access to a database file system requires a database login as a database user with
privileges on the tables that underlie the file system.The database administrator grants
access to a file system to database users, and different database users may have
different READ or UPDATE privileges to the file system. The database administrator has
access to all files stored in the DBFS file system.

On each client computer, access to a DBFS mount point is limited to the operating
system user that mounts the file system. This, however, does not limit the number of
users who can access the DBFS file system, because many users may separately
mount the same DBFS file system.

DBFS only performs database privilege checking. Linux performs operating system
file-level permission checking when a DBFS file system is mounted. DBFS does not
perform this check either when using the command interface or when using the
PL/SQL interface directly.

Enabling Shared Root Access

As an operating system user who mounts the file system, you can allow root access to
the file system by specifying the al | ow_r oot option. This option requires that the / et ¢/
fuse. conf file contain the user _al | ow ot her field, as demonstrated in Example 25-1.

Example 25-1 Enabling Root Access for Other Users

Allow users to specify the "allow.root' nount option.
user _al | ow_ot her

About DBFS Access Among Multiple Database Users

Some circumstances may require that multiple database users access the same
filesystem. For example, the database user that owns the filesystem may be a

ORACLE 25-12

Chapter 25
DBFS File System Access

privileged user and sharing its user credentials may pose a security risk. To mitigate
this, DBFS allows multiple database users to share a subset of the filesystem state.

While DBFS registrations and mounts made through the DBFS content API are private
to each user, the underlying filesystem and the tables on which they rely may be
shared across users. After this is done, the individual filesystems may be
independently mounted and used by different database users, either through SQL/
PLSQL, or through dbfs_client APIs.

Establishing DBFS Access Sharing Across Multiple Database Users

ORACLE

You can share DBFS across multiple database users.

In the following example, user user 1 is able to modify the filesystem, and user user 2
can see these changes. Here, user 1 is the database user that creates a filesystem,
and user 2 is the database user that eventually uses dbfs_cl i ent to mount and access
the filesystem. Both user 1 and user 2 must have the DBFS_ROLE privilege.

1. Connect as the user who creates the filesystem.

sys@ank as sysdba> connect userl
Connect ed.

2. Create the filesystem user 1_FS, register the store, and mount it as user1_nt.

user 1@ank> exec dbns_dbfs_sfs.createFil esysten(' userl _FS);

user 1@ank> exec dbns_dbfs_content.registerStore(' userl FS, 'posix',

' DBVMS_DBFS_SFS');

user 1@ank> exec dbns_dbfs_content. mount Store(' userl FS, 'userl_mt');
user 1@ ank> commi t;

3. [Optional] You may check that the previous step has completed successfully by
viewing all mounts.

user 1@ank> sel ect * fromtabl e(dbns_dbfs_content.|istMunts);

STORE_NAME | STORE I D| PROVI DER_NAME

PRONCER PG | PROVIDER| O PROA DER VERSI O | STORE FEATRES
soean e e A
T

o T

user1_FS | 1362968596| posi x
" DBMS_DBFS_SFS' | 3350646887 0.5.0 | 12714135 141867344
userl mt

01- FEB- 10 09. 44. 25. 357858 PM

DBMS_DBFS_CONTENT_PROPERTI ES_T(
DBMS_DBFS_CONTENT_PROPERTY_T(' principal', (null), 9),
DBMS_DBFS_CONTENT_PROPERTY_T(' owner', (null), 9),
DBMS_DBFS_CONTENT_PROPERTY_T('acl', (null), 9),
DBMS_DBFS_CONTENT_PROPERTY_T('asof', (null), 187),
DBMVS_DBFS_CONTENT_PROPERTY_T('read_only', '0', 2))

4. [Optional] Connect as the user who will use the dbfs_client.

25-13

ORACLE

10.

Chapter 25
DBFS File System Access

user 1@ ank> connect user2
Connect ed.

[Optional] Note that user 2 cannot see user 1's DBFS state, as he has no mounts.
user2@ank> sel ect * fromtabl e(dbns_dbfs_content.|istMunts);

While connected as user 1, export filesystem user 1_FS for access to any user with
DBFS_ROLE privilege.

user 1@ank> exec dbns_dbfs_sfs.exportFilesysten('userl FS);
user1@ank> commi t;

Connect as the user who will use the dbfs_client.

user 1@ ank> connect user?2
Connect ed.

As user 2, view all available tables.

user2@ank> sel ect * fromtabl e(dbns_dbfs_sfs.|istTables);

SCHEMA_NAMVE | TABLE_NAME | PTABLE_NAME
___________________________ |___.___.___.___.___.___.___|___.___.___.___.___
VERS! ON#

-------------------------------- CREATED

FORVATTED

userl | SFS$_FST 11 | SFS$_FSTP_11
0.5.0

01- FEB- 10 09. 43.53.497856 PM

01- FEB- 10 09. 43.53. 497856 PM

(null)

As user 2, register and mount the store, but do not re-create the user1_FS
filesystem.

user2@ank> exec dbns_dbfs_sfs.registerFilesystem
"user2_FS', 'userl', 'SFS$ FST 11');

user2@ank> exec dbns_dbfs_content.registerStore(
‘user2_FS, 'posix', 'DBMS_DBFS SFS');

user 2@ank> exec dbns_dbfs_cont ent. mount St or e(
‘user2_FS, 'user2_mt');

user2@ank> commi t;

[Optional] As user 2, you may check that the previous step has completed
successfully by viewing all mounts.

user2@ank> sel ect * fromtabl e(dbns_dbfs_content.|istMunts);

STORE_NAME | STORE I D| PROVI DER_NAME

PRONDER PG | PROADER.I D PROM DERVERSI OV | STOREFENTLRES
saean S A R
ST AT

o T

25-14

ORACLE

11.

12.

13.

14.

Chapter 25
DBFS File System Access

user2_FS | 1362968596] posi x
" DBMS_DBFS_SFS" | 3350646887/ 0.5.0 | 12714135 141867344
user 1_mt

01- FEB- 10 09.46. 16. 013046 PM

DBMS_DBFS_CONTENT_PROPERTI ES_T(
DBMS_DBFS_CONTENT_PROPERTY_T(' principal ', (null), 9),
DBVS_DBFS_CONTENT_PROPERTY_T(' owner', (null), 9),
DBVS_DBFS_CONTENT_PROPERTY_T('acl', (null), 9),
DBMS_DBFS_CONTENT PROPERTY_T('asof', (null), 187),
DBMS_DBFS_CONTENT PROPERTY T('read only', '0', 2))

[Optional] List path names for user 2 and user 1. Note that another mount,
user2_mt, for store user2_FS, is available for user 2. However, the underlying
filesystem data is the same for user 2 as for user 1.

user2@ank> sel ect pathname from dbfs_content;

PATHNAVE

[user2_mt
[user2_mt/.sfs/tools
[user2_mt/. sfs/ snapshot s
[user2_mt/ . sfs/content
[user2_mt/.sfs/attributes
[user2_mt/ . sfs/ RECYCLE
[user2_mt/.sfs

user 2@ ank> connect userl
Connect ed.

user 1@ank> sel ect pathname from dbfs_content;

PATHNAVE

[user1_mt
[userl_mt/.sfs/tools
[user1_mt/.sfs/snapshots
[userl_mt/.sfs/content
fuserl_mt/.sfs/attributes
[userl_mt/.sfs/RECYCLE
fuserl_mt/.sfs

In filesystem user 1_FS, user 1 creates file xxx.

user1@ank> var ret nunber;
user1@ank> var data bl ob;

userl@ank> exec :ret := dbnms_fuse.fs_create('/userl_mt/xxx', content => :data);
user1@ank> select :ret fromdual;
. RET
0

[Optional] Write to file xxx, created in the previous step.

user1@ank> var buf varchar2(100);

user 1@ ank> exec :buf := "hello world';

user1@ank> exec dbms_| ob. writ eappend(:data, |ength(:buf),
utl _raw. cast_to_raw:buf));

user 1@ ank> comit;

[Optional] Show that file xxx exists, and contains the appended data.

25-15

Chapter 25
DBFS File System Access

user 1@ank> sel ect pathnanme, utl_raw cast_to_varchar2(fil edata)
fromdbfs_content where filedata is not null;

PATHNAME

[user1_mt/xxx
hello world

15. User user 2 sees the same file in their own DBFS-specific path name and mount
prefix.

user 1@ ank> connect user?2
Connect ed.

user2@ank> sel ect pathname, utl_raw cast_to_varchar2(filedata) from
dbfs_content where filedata is not null;

PATHNAME

[user2_mt/ xxx
hello world

After the export and register pairing completes, both users behave as equals with
regard to their usage of the underlying tables. The export Fi | esyst en() procedure
manages the necessary grants for access to the same data, which is shared between
schemas. After user 1 calls export Fi | esysten(), filesystem access may be granted to
any user with DBFS_ROLE. Note that a different role can be specified.

Subsequently, user 2 may create a new DBFS filesystem that shares the same
underlying storage as the user 1_FS filesystem, by invoking
dbns_dbfs_sfs.registerFilesysten(), dbms_dbfs_sfs.registerStore(), and
drmbs_dbfs_sfs. nount St ore() procedure calls.

When multiple database users share a filesystem, they must ensure that all database
users unregister their interest in the filesystem before the owner (here, user 1) drops
the filesystem.

Oracle does not recommend that you run the DBFS as r oot .

HTTP, WebDAV, and FTP Access to DBFS

ORACLE

Components that enable HTTP, WebDAV, and FTP access to DBFS over the Internet
use various XML DB server protocols.

Topics:

e Internet Access to DBFS Through XDB

e Web Distributed Authoring and Versioning (WebDAV) Access
e FTP Access to DBFS

e HTTP Access to DBFS

25-16

Chapter 25
DBFS File System Access

Internet Access to DBFS Through XDB

To provide database users who have DBFS authentication with a hierarchical file
system-like view of registered and mounted DBFS stores, stores are displayed under
the path / dbf s.

The / dbf s folder is a virtual folder because the resources in its subtree are stored in
DBFS stores, not the XDB repository. XDB issues a dbns_dbfs_content. i st()
command for the root path name "/ " (with invoker rights) and receives a list of store
access points as subfolders in the / dbf s folder. The list is comparable to st ore_nount
parameters passed to dbns_dbfs_cont ent. mount Store(). FTP and WebDAYV users
can navigate to these stores, while HTTP and HTTPS users access URLs from
browsers.

Note that features implemented by the XDB repository, such as repository events,
resource configurations, and ACLs, are not available for the / dbf s folder.

DBFS Content API for guidelines on DBFS store creation, registration, deregistration,
mount, unmount and deletion

Web Distributed Authoring and Versioning (WebDAV) Access

ORACLE

WebDAV is an IETF standard protocol that provides users with a file-system-like
interface to a repository over the Internet.

WebDAV server folders are typically accessed through Web Folders on Microsoft
Windows (2000/NT/XP/Vista/7, and so on). You can access a resource using its fully
qualified name, for example, / dbfs/sfsl/dirl/filel.txt, where sfsl isthe name of
a DBFS store.

You need to set up WebDAV on Windows to access the DBFS filesystem.

¢ See Also:
Oracle XML DB Developer's Guide

The user authentication required to access the DBFS virtual folder is the same as for
the XDB repository.

When a WebDAV client connects to a WebDAV server for the first time, the user is
typically prompted for a username and password, which the client uses for all
subsequent requests. From a protocol point-of-view, every request contains
authentication information, which XDB uses to authenticate the user as a valid
database user. If the user does not exist, the client does not get access to the DBFS
store or the XDB repository. Upon successful authentication, the database user
becomes the current user in the session.

XDB supports both basic authentication and digest authentication. For security
reasons, it is highly recommended that HTTPS transport be used if basic
authentication is enabled.

25-17

Chapter 25
DBFS File System Access

FTP Access to DBFS

FTP access to DBFS uses the standard FTP clients found on most Unix-based
distributions. FTP is a file transfer mechanism built on client-server architecture with
separate control and data connections.

FTP users are authenticated as database users. The protocol, as outlined in RFC 959,
uses clear text user name and password for authentication. Therefore, FTP is not a
secure protocol.

The following commands are supported for DBFS:

USER: Authentication username

PASS: Authentication password

CWD: Change working directory

CDUP: Change to Parent directory

QUI T: Disconnect

PORT: Specifies an address and port to which the server should connect
PASV: Enter passive mode

TYPE: Sets the transfer mode, such as, ASCII or Binary

RETR: Transfer a copy of the file

STOR: Accept the data and store the data as a file at the server site
RNFR: Rename From

RNTO: Rename To

DELE: Delete file

RVD: Remove directory

MKD: Make a directory

PWD: Print working directory

LI ST: Listing of a file or directory. Default is current directory.
NLST: Returns file names in a directory

HELP: Usage document

SYST: Return system type

FEAT: Gets the feature list implemented by the server

NOOP: No operation (used for keep-alives)

EPRT: Extended address (IPv6) and port to which the server should connect

EPSV: Enter extended passive mode (IPv6)

HTTP Access to DBFS

Users have read-only access through HTTP/HTTPS protocols. Users point their
browsers to a DBFS store using the XDB HTTP server with a URL such as https://
host name: port/ dbf s/ sf s1 where sfsl is a DBFS store name.

ORACLE

25-18

Chapter 25
DBFS Administration

DBFS Administration

DBFS administration includes tools that perform diagnostics, manage failover, perform
backup and so on.

Topics:

Using Oracle Wallet with DBFS Client

DBFS Diagnostics

Preventing Data Loss During Failover Events
Bypassing Client-Side Write Caching
Backing up DBFS

Small File Performance of DBFS

Enabling Advanced SecureFiles LOB Features for DBFS

Using Oracle Wallet with DBFS Client

An Oracle Wallet allows the DBFS client to mount a DBFS store without requiring the
user to enter a password.

ORACLE

" See Also:

Oracle Database Enterprise User Security Administrator's Guide for more
information about creation and management of wallets

The "/ @ syntax means to use the wallet, as shown in Step 7.

1.

Create a directory for the wallet. For example:

mkdi r $ORACLE_HOME/ or acl e/ wal | et

Create an auto-login wallet.

nkstore -w | $ORACLE HOME/ oracl e/ wal I et -create
Add the wallet location in the client's sql net . or a file:

WALLET_LOCATI ON = (SOURCE = (NMETHOD = FILE) (METHOD DATA = (DI RECTCRY =
$ORACLE_HOVE/ oracl e/ wal let)))

Add the following parameter in the client's sqgl net . or a file:
SQLNET. WALLET_OVERRI DE = TRUE
Create credentials:

mkstore -w | wallet_|location -createCredential db_connect_string usernanme
password

For example:

mkstore -w | $ORACLE HOVE/ oracl e/ wal | et -createCredential DBConnectString scott
password

25-19

Chapter 25
DBFS Administration

6. Add the connection alias to your t nsnames. or a file.
7. Usedbfs_client with Oracle Wallet.
For example:

$ dbfs_client -0 wallet /@BConnectString /mt/dbfs

DBFS Diagnostics

The dbfs_cl i ent program supports multiple levels of tracing to help diagnose
problems. It can either output traces to a file or to / var/ | og/ nessages using the
sysl og daemon on Linux.

When you trace to a file, the dbf s_cl i ent program keeps two trace files on disk.
dbfs_client, rotates the trace files automatically, and limits disk usage to 20 MB.

By default, tracing is turned off except for critical messages which are always logged
to/var/ | og/ messages.

If dbf s_cl i ent cannot connect to the Oracle Database, enable tracing using the
trace_l evel andtrace_fil e options. Tracing prints additional messages to log file for
easier debugging.

DBFS uses Oracle Database for storing files. Sometimes Oracle server issues are
propagated to dbfs_cl i ent as errors. If there is a dbfs_cl i ent error, please view the
Oracle server logs to see if that is the root cause.

Preventing Data Loss During Failover Events

The dbfs_client program can failover to one of the other existing database instances
if one of the database instances in an Oracle RAC cluster fails.

For dbfs_cl i ent failover to work correctly, you must modify the Oracle database
service and specify failover parameters. Run the DBM5S_SERVI CE. MODI FY_SERVI CE
procedure to modify the service as shown Example 25-2

Example 25-2 Enabling DBFS Client Failover Events

exec DBMS_SERVI CE. MODI FY_SERVI CE(servi ce_nane => 'service_nange',
ag_ha_notifications => true,
failover_nethod => 'BASIC,
failover_type => "' SELECT',
failover_retries => 180,
failover_delay => 1);

Once you have completed the prerequisite, you can prevent data loss during a failover
of the DBFS connection after a failure of the back-end Oracle database instance. In
this case, cached writes may be lost if the client loses the connection. However, back-
end failover to other Oracle RAC instances or standby databases does not cause lost
writes.

e Specify the -0 fail over mount option:

$ dbfs_client database_user @atabase_server -o failover /mt/dbfs

ORACLE 25-20

Chapter 25
DBFS Administration

Bypassing Client-Side Write Caching

The sharing and caching semantics for dbfs_cl i ent are similar to NFS in using the
close-to-open cache consistency behavior. This allows multiple copies of dbfs_cli ent
to access the same shared file system. The default mode caches writes on the client
and flushes them after a timeout or after the user closes the file. Also, writes to a file
only appear to clients that open the file after the writer closed the file.

You can bypass client-side write caching.

* Specify O_SYNC when the file is opened.

To force writes in the cache to disk call f sync.

Backing up DBFS

You have two alternatives for backing up DBFS. You can back up the tables that
underlie the file system at the database level or use a file system backup utility, such
as Oracle Secure Backup, through a mount point.

Topics:
* DBFS Backup at the Database Level
* DBFS Backup Through a File System Utility

DBFS Backup at the Database Level

An advantage of backing up the tables at the database level is that the files in the file
system are always consistent with the relational data in the database. A full restore
and recover of the database also fully restores and recovers the file system with no
data loss. During a point-in-time recovery of the database, the files are recovered to
the specified time. As usual with database backup, modifications that occur during the
backup do not affect the consistency of a restore. The entire restored file system is
always consistent with respect to a specified time stamp.

DBFS Backup Through a File System Utility

The advantage of backing up the file system using a file system backup utility is that
individual files can be restored from backup more easily. Any changes made to the
restored files after the last backup are lost.

Specify the al | ow_r oot mount option if backups are scheduled using the Oracle
Secure Backup Administrative Server.

Small File Performance of DBFS

ORACLE

Like any shared file system, the performance of DBFS for small files lags the
performance of a local file system.

Each file data or metadata operation in DBFS must go through the FUSE user mode file
system and then be forwarded across the network to the database. Therefore, each
operation that is not cached on the client takes a few milliseconds to run in DBFS.

25-21

Chapter 25
Shrinking and Reorganizing DBFS Filesystems

For operations that involve an input/output (10) to disk, the time delay overhead is
masked by the wait for the disk 10. Naturally, larger 10s have a lower percentage
overhead than smaller I0s. The network overhead is more noticeable for operations
that do not issue a disk 10.

When you compare the operations on a few small files with a local file system, the
overhead is not noticeable, but operations that affect thousands of small files incur a
much more noticeable overhead. For example, listing a single directory or looking at a
single file produce near instantaneous response, while searching across a directory
tree with many thousands of files results in a larger relative overhead.

Enabling Advanced SecureFiles LOB Features for DBFS

DBFS offers advanced features available with SecureFiles LOBs: compression,
deduplication, encryption, and partitioning.

For example, DBFS can be configured as a compressed file system with partitioning.
At the time of creating a DBFS file system, you must specify the set of enabled
features for the file system.

" See Also:

Using Oracle LOB Storage and Creating a Partitioned File System for more
information about the features of SecureFiles LOBs.

Example 25-3 Enabling Advanced Secure Files LOB Features for DBFS

$ sql plus @bfs_create_fil esystem advanced tabl espace_nane file_systemane
[conpress-high | conpress-medium| conpress-low | noconpress]
[deduplicate | nodeduplicate]
[encrypt | noencrypt]
[partition | non-partition]

Shrinking and Reorganizing DBFS Filesystems

A DBFS Filesystem uses Online Filesystem Reorganization to shrink itself, enabling
the release of allocated space back to the containing tablespace.

Topics:

e About Changing DBFS Filesystems

e Advantages of Online Filesystem Reorganization

e Determining Availability of Online Filesystem Reorganization
e Invoking Online Filesystem Reorganization

e Required Permissions for Online Filesystem Reorganization

About Changing DBFS Filesystems

DBFS filesystems, like other database segments, grow dynamically with the addition
or enlargement of files and directories. Growth occurs with the allocation of space from

ORACLE 25-22

Chapter 25
Shrinking and Reorganizing DBFS Filesystems

the tablespace that holds the DBFS filesystem to the various segments that make up
the filesystem.

However, even if files and directories in the DBFS filesystem are deleted, the allocated
space is not released back to the containing tablespace, but continues to exist and be
available for other DBFS entities. A process called Online Filesystem Reorganization
solves this problem by shrinking the DBFS Filesystem.

The DBFS Online Filesystem Reorganization utility internally uses the Oracle
Database online redefinition facility, with the original filesystem and a temporary
placeholder corresponding to the base and interim objects in the online redefinition
model.

¢ See Also:

Oracle Database Administrator's Guide for further information about online
redefinition

Advantages of Online Filesystem Reorganization

DBFS Online Filesystem Reorganization is a powerful data movement facility with
these certain advantages.

These are:

e Itis online: When reorganization is taking place, the filesystem remains fully
available for read and write operations for all applications.

e It can reorganize the structure: The underlying physical structure and
organization of the DBFS filesystem can be changed in many ways, such as:

— A non-partitioned filesystem can be converted to a partitioned filesystem and
vice-versa.

— Special SecureFiles LOB properties can be selectively enabled or disabled in
any combination, including the compression, encryption, and deduplication
properties.

— The data in the filesystem can be moved across tablespaces or within the
same tablespace.

e It can reorganize multiple filesystems concurrently: Multiple different
filesystems can be reorganized at the same time, if no temporary filesystems have
the same name and the tablespaces have enough free space, typically, twice the
space requirement for each filesystem being reorganized.

Determining Availability of Online Filesystem Reorganization

ORACLE

DBFS for Oracle Database 12¢ and later supports online filesystem reorganization.
Some earlier versions also support the facility. To determine if your version does,
query for a specific function in the DBFS PL/SQL packages, as shown below:

* Query for a specific function in the DBFS PL/SQL packages.

$ sqlplus / as sysdba
SELECT * FROM dba_procedures

25-23

Chapter 25
Shrinking and Reorganizing DBFS Filesystems

VWHERE owner = 'SYS
and obj ect _nane = ' DBMS_DBFS_SFS'
and procedure_name = ' REORGANI ZEFS';

If this query returns a single row similar to the one in this output, the DBFS installation
supports Online Filesystem Reorganization. If the query does not return any rows,
then the DBFS installation should either be upgraded or requires a patch for
bug-10051996.

OBJECT_| D| SUBPROGRAM | Dj OVERLOAD | CBIECT_TYPE | AGY
PIP

s ERREREEEEEEEE R R EECEEEEEE RS [---]---
| MPLTYPEOWKER

PAR] | NT| DET| AUTH D
SRR Rt ROl EE R

DBIMS_DBFS_SFS
REORGANI ZEFS

11424| 52| (nul 1) | PACKAGE INO |
NO
(nul 1)
(nul 1)
NO | NO | NO | CURRENT USER

Invoking Online Filesystem Reorganization

ORACLE

You can perform an Online Filesystem Reorganization by creating a temporary DBFS
filesystem.

1. Create a temporary DBFS filesystem with the desired new organization and
structure: including the desired target tablespace (which may be the same
tablespace as the filesystem being reorganized), desired target SecureFiles LOB
storage properties (compression, encryption, or deduplication), and so on.

2. Invoke the PL/SQL procedure to reorganize the DBFS filesystem using the newly-
created temporary filesystem for data movement.

3. Once the reorganization procedure completes, drop the temporary filesystem.

The example below reorganizes DBFS filesystem FS1 in tablespace TS1 into a new
tablespace TS2, using a temporary filesystem named TMP_FS, where all filesystems
belong to database user dbf s_user:

$ cd $ORACLE HOME/ r dbis/ adni n
$ sql plus dbfs_user/***

@bfs_create_filesystem TS2 TMP_FS

EXEC DBVS_DBFS_SFS. REORGANI ZEFS(' FS1', 'TMP_FS');
@lbf s_drop_fil esystem TMP_FS

QIT;

25-24

Chapter 25
Shrinking and Reorganizing DBFS Filesystems

where:

TMP_FS can have any valid name. It is intended as a temporary placeholder and
can be dropped (as shown in the example above) or retained as a fully
materialized point-in-time snapshot of the original filesystem.

FS1 is the original filesystem and is unaffected by the attempted reorganization. It
remains usable for all DBFS operations, including SQL, PL/SQL, and dbfs_cl i ent
mounts and commandline, during the reorganization. At the end of the
reorganization, FS1 has the new structure and organization used to create TMP_FS
and vice versa (TMP_FS will have the structure and organization originally used for
FS1). If the reorganization fails for any reason, DBFS attempts to clean up the
internal state of FS1.

TS2 needs enough space to accommodate all active (non-deleted) files and
directories in FS1.

TS1 needs at least twice the amount of space being used by FS1 if the filesystem is
moved within the same tablespace as part of a shrink.

Required Permissions for Online Filesystem Reorganization

Database users must have the following set of privileges for Online Filesystem
Reorganizaton.

Users must have these privileges:

ORACLE

ALTER ANY TABLE
DROP ANY TABLE
LOCK ANY TABLE
CREATE ANY TABLE
SELECT ANY TABLE
REDEFI NE ANY TABLE
CREATE ANY TRI GGER
CREATE ANY | NDEX
CREATE TABLE
CREATE MATERI ALI ZED VI EW
CREATE TRI GGER

25-25

LOB Demonstration Files

This appendix describes files distributed with the database that demonstrate how
LOBs are used in supported programmatic environments. This appendix contains
these topics:

 PL/SQL LOB Demonstration Files
 OCI LOB Demonstration Files

e Java LOB Demonstration Files

PL/SQL LOB Demonstration Files

The following table lists PL/SQL demonstration files. These files are installed
in $ORACLE_HOWE/ r dbns/ deno/ | obs/ pl sql / . A driver program, | obdeno. sql , that calls
these files is found in the same directory.

Table A-1 PL/SQL Demonstration Examples

File Name Description Usage Information

fclose c.sql Closing a BFI LE with CLOSE Closing a BFILE with CLOSE

fclose f.sql Closing a BFI LE with FI LECLOSE Closing a BFILE with FILECLOSE

fcl osea. sql Closing all open BFI LEs Closing All Open BFILEs with
FILECLOSEALL

f compare. sql Comparing all or parts of two BFI LEs Comparing All or Parts of Two BFILES

fcopyl oc. sql Copying a LOB locator for a BFI LE About Assigning a BFILE Locator

fdisplay.sql Displaying BFI LE data About Displaying BFILE Data

fexists. sql Checking if a BFI LE exists Determining Whether a BFILE Exists

ffilopen.sql Opening a BFI LE with FI LEOPEN About Opening a BFILE with FILEOPEN

ffisopen. sql Checking if the BFI LE is OPEN with FI LEI SOPEN About Determining Whether a BFILE Is
Open with FILEISOPEN

fgetdir.sql Getting the directory object name and filename of Getting Directory Object Name and File

a BFI LE Name of a BFILE
finsert.sql Inserting row containing a BFI LE by initializinga About Inserting a Row Containing a
BFI LE locator BFILE

fisopen. sql Checking if the BFI LE is open with | SOPEN About Determining Whether a BFILE Is
Open Using ISOPEN

flength. sql Getting the length of a BFI LE Getting the Length of a BFILE

fl oadl ob. sql Loading a LOB with BFI LE data About Loading a LOB with BFILE Data

fopen. sql Opening a BFI LE with OPEN About Opening a BFILE with OPEN

fpattern.sql

ORACLE

Checking if a pattern exists in a BFI LE using
instr

Checking If a Pattern Exists in a BFILE
Using INSTR

A-1

Table A-1 (Cont.) PL/SQL Demonstration Examples
]

File Name

Description

Appendix A
PL/SQL LOB Demonstration Files

Usage Information

fread. sql
freadprt. sql

fupdate. sql

| append. sql
| conpare. sql

| copy. sql
| copyl oc. sql

| di spl ay. sql
| erase. sql
linsert.sql

[instr.sql

l'i sopen. sql
[istenp. sql

[dbl obf. sql

I dcl obf. sql

[l dcl obs. sql

[l engt h. sql
Il oaddat . sql

| obuse. sql

[read. sql
| substr. sql
[trimsql
lwite. sql
lwriteap.sql

Reading data from a BFI LE
Reading portion of a BFI LE data using subst r

Updating a BFI LE by initializing a BFILE locator

Appending one LOB to another
Comparing all or part of LOB
Copying all or part of a LOB to another LOB

Copying a LOB locator

Displaying LOB data
Erasing part of a LOB

Inserting a row by initializing LOB locator bind
variable

Seeing if pattern exists in LOB (i nstr)

Seeing if LOB is open
Seeing if LOB is temporary

Using DBMS_LOB. LOADBLOBFROVFI LE to load a

BLOB with data from a BFI LE

Using DBMS_LOB. LOADCLOBFROVFI LE to load a

CLOB or NCLOB with data from a BFI LE
Using DBMS_LOB. LOADCLOBFROMWFI LE to load

segments of a stream of data from a BFI LE into

different CLOBs
Getting the length of a LOB

Loading a LOB with BFI LE data
Examples of LOB API usage.

Reading data from LOB

Reading portion of LOB (substr)
Trimming LOB data

Writing data to a LOB

Writing to the end of LOB (write append)

About Reading Data from a BFILE

About Reading a Portion of BFILE Data
Using SUBSTR

About Updating a BFILE by Initializing a
BFILE Locator

About Appending One LOB to Another
Comparing All or Part of Two LOBs

Copying All or Part of One LOB to
Another LOB

Copying All or Part of One LOB to
Another LOB

About Displaying LOB Data
About Erasing Part of a LOB

Inserting a Row by Initializing a LOB
Locator Bind Variable

Patterns: Checking for Patterns in a LOB
Using INSTR

Determining Whether a LOB is Open

Determining Whether a LOB instance Is
Temporary

About Loading a BLOB with Data from a
BFILE

Loading a CLOB or NCLOB with Data
from a BFILE

Loading a CLOB or NCLOB with Data
from a BFILE

Length: Determining the Length of a LOB
Loading a LOB with Data from a BFILE

Creating Persistent and Temporary LOBs
in PL/SQL

About Reading Data from a LOB
Reading a Portion of a LOB (SUBSTR)
About Trimming LOB Data

About Writing Data to a LOB

About Appending to a LOB

ORACLE

A-2

OCI LOB Demonstration Files

Table A-2 OCI Demonstration Examples

Appendix A
OCI LOB Demonstration Files

The following table lists OCI demonstration files. These files are installed
in $ORACLE_HOWE/ r dbns/ deno/ | obs/ oci /. A driver program, | obdeno. c, that calls
these files is found in the same directory, as is the header file | obdeno. h.

File Name Description Usage Information

fclose c.c Closing a BFI LE with CLOSE Closing a BFILE with CLOSE

fclose f.c Closing a BFI LE with FI LECLOSE Closing a BFILE with FILECLOSE

fclosea. c Closing all open BFI LEs Closing All Open BFILEs with

FILECLOSEALL

fcopyl oc. c Copying a LOB locator for a BFI LE About Assigning a BFILE Locator

fdisplay.c Displaying BFI LE data About Displaying BFILE Data

fexists.c Checking if a BFI LE exists Determining Whether a BFILE Exists

ffilopen.c Opening a BFILE with FI LEOPEN About Opening a BFILE with FILEOPEN

ffisopen.c Checking if the BFI LE is OPEN with About Determining Whether a BFILE Is
Fl LEl SOPEN Open with FILEISOPEN

fgetdir.c Getting the directory object name and Getting Directory Object Name and File
filename of a BFI LE Name of a BFILE

finsert.c Inserting row containing a BFI LE by About Inserting a Row Containing a BFILE
initializing a BFI LE locator

fisopen.c Checking if the BFI LE is open with About Determining Whether a BFILE Is
| SOPEN Open Using ISOPEN

flength.c Getting the length of a BFI LE Getting the Length of a BFILE

floadl ob. c Loading a LOB with BFI LE data About Loading a LOB with BFILE Data

fopen. c Opening a BFI LE with OPEN About Opening a BFILE with OPEN

fread.c Reading data from a BFI LE About Reading Data from a BFILE

fupdate.c Updating a BFI LE by initializing a About Updating a BFILE by Initializing a
BFILE locator BFILE Locator

| append. ¢ Appending one LOB to another About Appending One LOB to Another

[copy.c Copying all or part of a LOB to another Copying All or Part of One LOB to Another
LOB LOB

| copyl oc.c Copying a LOB locator Copying All or Part of One LOB to Another

LOB

| display.c Displaying LOB data About Displaying LOB Data

| equal . c Seeing if one LOB locator is equal to Equality: Checking If One LOB Locator Is
another Equal to Another

| erase.c Erasing part of a LOB About Erasing Part of a LOB

| getchar.c Getting character set id About Determining Character Set ID

I getchfmc Getting character set form of the About Determining Character Set Form
foreign language ad text, ad_fltextn

ORACLE A-3

Table A-2 (Cont.) OCI Demonstration Examples

Appendix A
Java LOB Demonstration Files

File Name Description Usage Information
linit.c Seeing if a LOB locator is initialized About Determining Whether LOB Locator Is
Initialized
linsert.c Inserting a row by initializing LOB Inserting a Row by Initializing a LOB
locator bind variable Locator Bind Variable
lisopen.c Seeing if LOB is open Determining Whether a LOB is Open
listenp.c Seeing if LOB is temporary Determining Whether a LOB instance Is
Temporary
[length.c Getting the length of a LOB Length: Determining the Length of a LOB
|| oaddat . c Loading a LOB with BFI LE data Loading a LOB with Data from a BFILE
Iread.c Reading data from LOB About Reading Data from a LOB
I readarr.c Reading data from an array of LOB About LOB Array Read
locators
[trimec Trimming LOB data About Trimming LOB Data
lwite.c Writing data to a LOB About Writing Data to a LOB
[witearr.c Writing data into an array of LOB LOB Array Write
locators
lwiteap.c Writing to the end of LOB (write About Appending to a LOB

append)

Java LOB Demonstration Files

Table A-3 Java Demonstration Examples

The following table lists Java demonstration files. These files are installed
in $ORACLE_HOME/ r dbns/ deno/ | obs/ j aval .

File Name

Description

Usage Information

Readre. t xt

LobDemoConnectionFactory.java -

fclose c.java

fclose f.java

fclosea.java

fcompare. java

ORACLE

- See Oracle Database JDBC Developer's Guide
for information on setting up your system to be
able to compile and run JDBC programs with the
Oracle Driver

As written LobDemoConnect i onFact ory uses

the JDBC OCI driver with a local connection. You
should edit the URL "j dbc: oracl e: oci 8: @ to
match your setup. Again see Oracle Database
JDBC Developer's Guide.

Closing a BFI LE with
CLOSE

Closing a BFI LE with
FI LECLOSE

Closing a BFILE with CLOSE

Closing a BFILE with FILECLOSE

Closing all open BFI LEs Closing All Open BFILEs with FILECLOSEALL

Comparing all or parts of Comparing All or Parts of Two BFILES

two BFI LEs

A-4

Table A-3 (Cont.) Java Demonstration Examples

Appendix A
Java LOB Demonstration Files

File Name

Description

Usage Information

fexists.java

ffilopen.java

ffisopen.java

fgetdir.java

finsert.java

fisopen.java

flength.java

fopen.java

fpattern.java

fread.java

fupdate.java

| append. j ava
| conpare. java
| copy. java
| erase.java
linsert.java
linstr.java

lisopen.java

listenpb.java

listenpc.java

ORACLE

Checking if a BFI LE

exists

Opening a BFI LE with

FI LEOPEN

Checking if the BFI LE is
OPEN with FI LEI SOPEN

Getting the directory
object name and filename

of a BFI LE

Inserting row containing a
BFI LE by initializing a

BFI LE locator

Checking if the BFI LE is
open with | SOPEN

Getting the length of a

BFI LE

Opening a BFI LE with

CPEN

Checking if a pattern
exists in a BFI LE using

instr

Reading data from a

BFI LE

Updating a BFI LE by
initializing a BFI LE

locator

Appending one LOB to

another

Comparing all or part of

LOB

Copying all or part of a
LOB to another LOB

Erasing part of a LOB

Inserting a row by

initializing LOB locator

bind variable

Seeing if pattern exists in

LOB (instr)

Seeing if LOB is open

Seeing if LOB is
temporary
Seeing if LOB is
temporary

Determining Whether a BFILE Exists

About Opening a BFILE with FILEOPEN

About Determining Whether a BFILE Is Open with
FILEISOPEN

Getting Directory Object Name and File Name of
a BFILE

About Inserting a Row Containing a BFILE

About Determining Whether a BFILE Is Open
Using ISOPEN

Getting the Length of a BFILE

About Opening a BFILE with OPEN

Checking If a Pattern Exists in a BFILE Using
INSTR

About Reading Data from a BFILE

About Updating a BFILE by Initializing a BFILE
Locator

About Appending One LOB to Another

Comparing All or Part of Two LOBs

Copying All or Part of One LOB to Another LOB

About Erasing Part of a LOB

Inserting a Row by Initializing a LOB Locator Bind
Variable

Patterns: Checking for Patterns in a LOB Using
INSTR

Determining Whether a LOB is Open

Determining Whether a LOB instance Is
Temporary

Determining Whether a LOB instance Is
Temporary

A-5

Table A-3 (Cont.) Java Demonstration Examples
-

File Name

Description

Appendix A
Java LOB Demonstration Files

Usage Information

[length.|java
|| oaddat . j ava

[read. java
[substr.java

[trimjava
lwite.java

[witeap.java

Getting the length of a
LOB

Loading a LOB with
BFILE data

Reading data from LOB

Reading portion of LOB
(substr)

Trimming LOB data
Writing data to a LOB

Writing to the end of LOB
(write append)

Length: Determining the Length of a LOB
Loading a LOB with Data from a BFILE

About Reading Data from a LOB
Reading a Portion of a LOB (SUBSTR)

About Trimming LOB Data
About Writing Data to a LOB
About Appending to a LOB

ORACLE

A-6

Glossary

ORACLE

BFILE

A Large Object datatype that is a binary file residing in the file system, outside of the
database data files and tablespace. Note that the BFI LE datatype is also referred to as
an external LOB in some documentation.

Binary Large Object (BLOB)

A Large Object datatype that has content consisting of binary data and is typically
used to hold unstructured data. The BLOB datatype is included in the category
Persistent LOBs because it resides in the database.

BLOB
See Binary Large Object (BLOB) .

Character Large Object (CLOB)

The LOB data type that has content consisting of character data in the database
character set. A CLOB can be indexed and searched by the Oracle Text search
engine.

CLOB
See Character Large Object (CLOB).

data interface

Data interface is a generic term referring to whichever interface is in use, to query the
database or to update the database.

deduplication

Deduplication enables Oracle Database to automatically detect duplicate LOB data
and conserve space by only storing one copy (if storage parameter is SECUREFI LE).

DBFS

The Database Filesystem, which is visible to end-users as the client-side API
(dbns_dbf s_cont ent).

DBFS Link

Database File System Links (DBFS Links) are references from SecureFiles LOBs to
data stored outside the segment where the SecureFiles LOB resides.

Glossary-1

ORACLE

Glossary

external LOB

A Large Object datatype that is stored outside of the database tablespace. The BFI LE
datatype is the only external LOB datatype. See also BFI LE.

internal persistent LOB
A large object (LOB) that is stored in the database in a BLOB/CLOB/NCLOB column.

introspect
To examine attributes or value of an object.

Large Objects (LOBs)

Large Obijects include the following SQL datatypes: BLOB, CLOB, NCLOB, and BFI LE.
These datatypes are designed for storing data that is large in size. See also BFI LE,
Binary Large Object, Character Large Object, and National Character Large Object.

LOB
See Large Objects (LOBs)

LOB attribute

A large object datatype that is a field of an object datatype. For example a CLOB field of
an object type.

LOB value

The actual data stored by the Large Object. For example, if a BLOB stores a picture,
then the value of the BLOB is the data that makes up the image.

mount point

The path where the Database File System is mounted. Note that all file systems
owned by the database user are seen at the mount point.

National Character Large Object

The LOB data type that has content consisting of Unicode character data in the
database national character set. An NCLOB can be indexed and searched by the Oracle
Text search engine.

NCLOB
See National Character Large Object.

persistent LOB

A BLOB, CLOB, or NCLCB that is stored in the database. A persistent LOB instance can
be selected out of a table and used within the scope of your application. The ACID
(atomic, consistent, isolated, durable) properties of the instance are maintained just as
for any other column type. Persistent LOBs are sometimes also referred to as internal
persistent LOBs or just, internal LOBs.

A persistent LOB can exist as a field of an object data type and an instance in a LOB-
type column. For example a CLOB attribute of an instance of type obj ect .

Glossary-2

ORACLE

Glossary

See also temporary LOB and external LOB.

SECUREFILE

LOB storage parameter that allows deduplication, encryption, and compression. The
opposite parameter, that does not allow these features, is BASI CFI LE.

SPI

The DBFS Store Provider Interface, visible to end-users as the server-side SPI
(dbns_dbfs_content _spi).

Store

A unified content repository, visible to the DBFS, and managed by a single store
provider. The store itself may be a single relational table, a collection of tables, or even
a collection of relational and non-relational entities (e.g., hierarchical stores like tapes
and the cloud, elements inside an XML file, components of HDF-style documents, and
S0 on.

Store Provider
An entity, embodied as a P L/SQL package, that implements the DBFS SPI.

tablespace
A database storage unit that groups related logical structures together.

temporary LOB

A BLOB, CLOB, or NCLOB that is accessible and persists only within the application scope
in which it is declared. A temporary LOB does not exist in database tables.

Glossary-3

Index

A

access statistics for LOBs, 15-5
accessing a LOB
using the LOB APIs, 2-8
accessing external LOBs, 11-3
accessing LOBs, 7-1
administrative APIs, 23-8
Advanced LOB compression, 3-2
Advanced LOB Deduplication, 3-2
ALTER TABLE parameters for SecureFiles
LOBs, 3-16
amount, 11-17
amount parameter
used with BFILEs, 11-11
appending
writing to the end of a LOB, 12-26
array read, 12-14
array write, 12-30
assigning OCIlLobLocator pointers, 10-12
ASSM tablespace, 3-2, 3-7, 3-23, 13-10, 17-6
available LOB methods, 10-4, 10-5

B

BASICFILE
LOB storage parameter, 3-7
BasicFiles LOB Storage, 3-2
BasicFiles LOBs and SecureFiles LOBs, 1-8
BFILE class, See JDBC, 10-28
BFILE-streaming, See JDBC, 10-34
BFILENAME function, 2-6, 11-5
BFILEs, 1-4
accessing, 11-3
converting to CLOB or NCLOB, 11-11
creating an object in object cache, 14-15
DBMS_LOB read-only procedures, 10-9
DBMS_LOB, offset and amount parameters
in bytes, 10-6
locators, 2-3
maximum number of open, 11-22, 16-7
maximum size, 14-16
multithreaded server mode, 2-10, 11-9
not affected by LOB storage properties, 13-6

ORACLE

BFILEs (continued)
OCI functions to read/examine values, 10-14,
10-21
OCl read-only functions, 10-14, 10-21
opening and closing using JDBC, 10-38
Pro*C/C++ precompiler statements, 10-24
Pro*COBOL precompiler embedded SQL
statements, 10-27
reading with DBMS_LOB, 10-8
security, 11-6
storage devices, 1-5
streaming APIs, 10-44
using JDBC to read/examine, 10-34
using Pro*C/C++ precompiler to open and
close, 10-25
bind variables, used with LOB locators in OCI,
10-13
binds
See also INSERT statements and UPDATE
statements, 9-6
BLOB-streaming, See JDBC, 10-32
BLOBs
class, 10-17, 10-28
DBMS_LOB, offset and amount parameters
in bytes, 10-6
maximum size, 14-16
modify using DBMS_LOB, 10-8
using JDBC to modify, 10-32
using JDBC to read/examine BLOB values,
10-32
using oracle.sql.BLOB methods to modify,
10-32
body.sql script, 24-16
built-in functions, remote, 5-4

C

C, See OCl, 10-1
C++, See Pro*C/C++ precompiler, 10-2
CACHE / NOCACHE, 13-11
caches
object cache, 14-16
callback, 11-17, 12-13, 12-26
capi.sql script, 24-29

Index-1

catalog views
v$temporary_lobs, 16-6
character data
varying width, 13-4
character set ID, 10-7, 10-10
See CSID parameter, 10-10
character set ID, getting
persistent LOBs, 12-5
charactersets
multibyte, LONG and LOB datatypes, 9-11
CHECKACCESS, 23-17
CHUNK, 3-8, 13-13
chunk size, 12-28
and LOB storage properties, 13-6
multiple of, to improve performance, 12-13
CLOB
session collation settings, 7-6
CLOB-streaminng, See JDBC, 10-33
CLOBs
class, See JDBC, 10-28
columns
varying- width character data, 13-4
datatype
varying-width columns, 13-4
DBMS_LOB, offset and amount parameters
in characters, 10-6
modify using DBMS_LOB, 10-8
opening and closing using JDBC, 10-37
reading/examining with JDBC, 10-33
using JDBC to modify, 10-33
closing
all open BFILEs, 11-27
BFILEs with CLOSE, 11-25
BFILEs with FILECLOSE, 11-25
clustered tables, 17-9
COBOL, See Pro*COBOL precompiler, 10-2
codepoint semantics, 7-7
comparing
all or parts of two BFILEs, 11-20
comparing, all or part of two LOBs
persistent LOBs, 12-21
COMPRESS, 3-10, 3-18
compression
Advanced LOB, 3-2
content store
listing, 23-10
looking up, 23-11
registering, 23-8
unmounting, 23-10
conventional path load, 16-2
conversion
explicit functions for PL/SQL, 8-2
conversion, implicit from CLOB to character type,
7-3

ORACLE

Index

conversions
character set, 11-11
from binary data to character set, 11-11
implicit, between CLOB and VARCHAR?2, 8-1
converting
to CLOB, 8-2
copy semantics, 1-6
internal LOBs, 6-4
copying
directories, 25-5
files, 25-5
LOB locator
persistent LOBs, 12-24
LOB locator for BFILE, 11-22
copying, all or part of a LOB to another LOB
persistent LOBs, 12-23
CREATE TABLE and SecureFiles LOB features,
3-10
CREATE TABLE parameters for SecureFiles
LOBs, 3-3
CREATE TABLE syntax and notes, 3-3
creating
a directory, 25-5
partitioned file system, 25-2
creating a non-patrtitioned file system, 25-2
creating SecureFiles File System Store, 21-2
CSID parameter
setting OCILobRead and OCILobWrite to
OCI_UcCs2ID, 10-10

D

data interface for persistent LOBs, 9-1, 17-8
multibyte charactersets, 9-11
data interface for remote LOBs, 9-25
data interface in Java, 9-25
Data Pump, 17-8
SecureFiles LOBs, 16-5
Data Pumping
transferring LOB data, 16-5
database file system links, 22-14
db_securefile init.ora parameter, 3-22
DBFS
administration, 25-19
backing up, 25-21
body.sql script, 24-16
caching, 25-21
capi.sql script, 24-29
client, 20-2
command-Line interface, 25-4
Content SPI (Store Provider Interface), 24-2
content store, 20-4
creating a custom provider, 24-3
creating a custom provider, mechanics, 24-4
creating SecureFiles File System Store, 21-2

Index-2

DBFS (continued)
custom provider sample installation and
setup, 24-4
DBFS Server, 20-2
diagnostics, 25-20
example store provider, 24-3
FTP access, 25-18
hierachical store, setting up, 22-2
Hierarchical Store Package,
DBMS_DBFS_HS, 22-1
hierarchical store, dropping, 22-4
hierarchical store, setting up, 22-3
hierarchical store, using, 22-3
hierarchical store, using compression, 22-4
hierarchical store, using tape, 22-5
HS store wallet, setting up, 22-2
HTTP access to, 25-18
internet access, 25-17
managing client failover, 25-20
Online Filesystem Reorganization, 25-22
overview, 20-1
RAC cluster, 25-20
reorganizing file systemsDBFS
online redefinition, 25-22
SecureFiles LOB advanced features, 25-22
SecureFiles Store
setting up, 21-1
SecureFiles Store File Systems, dropping,
21-6
SecureFiles Store File Systems, initializing,
21-4
sharing, 25-21
shrinking file systems, 25-22
small file performance, 25-21
spec.sql script, 24-7
store creation, 24-1
TaBleFileSystem Store Provider ("tbfs"), 24-3
TBFS.SQL script, 24-6
TBL.SQL script, 24-6
using a SecureFiles Store File System, 21-5
using Oracle Wallet, 25-19
XDB internet access, 25-17
DBFS Content API
abstract operations, 23-17
access checks, 23-17
and stores, 23-2
content IDs, 23-4
creation operations, 23-13
deletion operations, 23-14
directory listings, 23-16
exceptions, 23-6
get operations, 23-14
getting started, 23-3
interface versioning, 23-12
lock types, 23-5

ORACLE

Index

DBFS Content API (continued)
locking operations, 23-17
move operations, 23-15
navigation, 23-16
optional properties, 23-6
overview, 23-1
path name types, 23-4
path names, 23-12
path normalization, 23-18
path properties, 23-3
property access flags, 23-6
property bundles, 23-7
put operations, 23-14
rename operations, 23-15
role, 23-3
search, 23-16
session defaults, 23-12
space usage, 23-11
standard properties, 23-5
statistics support, 23-18
store descriptors, 23-7
store features, 23-4
structure, properties, 23-20
tracing support, 23-19
types and constants, 23-3
user-defined properties, 23-6
using, 21-5
DBFS content store path
creating, 25-4
DBFS file system
accessing, 25-3
client prerequisites, 25-3
creating, 25-1
creating a DBFS file system, 25-1
dropping, 25-3
partitioned versus non-partitioned, 25-2
DBFS installation, 25-1
DBFS links, 22-14
DBFS mounting interface
Linux and Solaris, 25-6
DBFS Mounting Interface (Linux Only), 25-6
DBFS SecureFiles Store
setting up permissions, 21-1
DBFS SecureFiles Store Package,
DBMS_DBFS_SFS, 21-6
DBFS SPI (DBMS_DBFS_CONTENT_SPI), 24-1
DBFS Store
mounting, 25-7
DBMS_DBFS_CONTENT_SPI, 24-1
DBMS_DBFS_HS, 22-1
DBMS_DBFS_HS package, 22-17
methods, 22-18
views, 22-19
DBMS_LOB
updating LOB with bind variable, 14-9

DBMS_LOB functions on a NULL LOB
restriction, 13-2
DBMS_LOB package
available LOB procedures/functions,
10-2-10-5
for temporary LOBs, 10-9

functions/procedures to modify BLOB, CLOB,

and NCLOB, 10-8
functions/procedures to read/examine
internal and external LOBs, 10-8
multithreaded server, 2-10
multithreaded server mode, 11-9
offset and amount parameter guidelines,
10-6
open and close, JDBC replacements for,
10-35
opening/closing internal and external LOBs,
10-10
provide LOB locator before invoking, 10-5
read-only functions/procedures for BFILEsS,
10-9
to work with LOBSs, using, 10-5
using with SecureFiles and DBFS, 3-26
WRITE()
guidelines, 12-28
DBMS_LOB.GET_STORAGE_LIMIT, 14-18
DBMS_LOB.GETCHUNKSIZE, 14-17
DBMS LOB.GETLENGTH return value, 7-8
DBMS_LOB.LOADCLOBFROMFILE, 10-6
DBMS_LOB.WRITE()
passing hexadecimal string to, 12-29
DBMS_REDEFINITION package, 3-16
DBMS_SPACE package, 3-33
DECRYPT, 3-10, 3-18
DEDUPLICATE, 3-10, 3-18
deduplication
Advanced LOB, 3-2
diagnostics
DBFS, 25-20
direct-path load, 16-2
directories
catalog views, 11-8
creating, 25-5
guidelines for usage, 11-8
listing, 25-5
ownership and privileges, 11-6
DIRECTORY object, 11-3
catalog views, 11-8
getting the alias and filename, 11-23
guidelines for usage, 11-8
name specification, 11-6
names on Windows platforms, 11-6
READ permission on object not individual
files, 11-7
rules for using, 16-6

ORACLE

DIRECTORY object (continued)
symbolic links, and, 16-6
DISABLE STORAGE IN ROW, 13-6
displaying
LOB data for persistent LOBs, 12-12
domain indexing on LOB columns, 13-16

E

Index

embedded SQL statements, See Pro*C/C++
precompiler and Pro*xCOBOL
precompiler, 10-23
empty LOBs
creating using JDBC, 10-47
JDBC, 10-47
EMPTY_BLOB() and EMPTY_CLOB, LOB
storage properties for, 13-6
EMPTY_CLOB()/BLOB()
to initialize internal LOB, 2-5
ENABLE STORAGE IN ROW, 13-6
ENCRYPT, 3-10, 3-18
encryption
SecureFiles, 3-3
equal, one LOB locator to another
persistent LOBs, 12-25
erasing, part of LOB
persistent LOBs, 12-37
examples
repercussions of mixing SQL DML with
DBMS_LOB, 14-6
updated LOB locators, 14-8

updating a LOB with a PL/SQL variable, 14-9

examples, LOB access statistics, 15-6
existence
check for BFILE, 11-21
extensible indexes, 13-17
external LOBs (BFILESs), 1-4
See BFILEs, 1-4
external LOBs (BFILES), See BFILEs, 1-4

F

file system

links, 22-14

security model, 25-12
FILESYSTEM_LIKE_LOGGING

LOB storage parameter, 3-9
FOR UPDATE clause

LOB locator, 14-3
FREELIST GROUPS, 3-10
FREELISTS, 3-10
FREEPOOLS, 3-8, 3-10
FTP

access to DBFS, 25-16

Index-4

function-based indexes, 13-17
on LOB columns, 13-17
FUSE
installing, 25-7

G

getting started with DBFS Content API, 23-3
getting started with DBMS_DBFS_CONTENT,
23-3

H

hexadecimal string
passing to DBMS_LOB.WRITE(), 12-29
hierarchical store
dropping, 22-4
setting up, 22-3
using, 22-3
using compression, 22-4
using tape, 22-5
Hierarchical Store Package, DBMS_DBFS_HS,
22-1
HS store wallet, 22-2
HTTP
access to DBFS, 25-16
HTTP access to DBFS, 25-18

implicit assignment and parameter passing for
LOB columns, 9-4
implicit conversion of CLOB to character type,
7-3
improved LOB usability, 7-1
index-organized tables, restrictions for LOB
columns, 13-22
indexes
function-based, 13-17
rebuilding after LONG-to-LOB migration,
17-9
restrictions, 17-9
indexes on LOB columns
B-tree index not supported, 13-16
bitmap index not supported, 13-16
domain indexing, 13-16
restriction, 13-16
Information Lifecycle Management (ILM), 22-1
init.ora parameter db_securefile, 3-22
INITFS, 21-4
initialization parameters for SecureFiles LOBs,
3-22
initializing
during CREATE TABLE or INSERT, 6-6

ORACLE

Index

initializing (continued)
using EMPTY_CLOB(), EMPTY_BLOBY(), 2-5
initializing a LOB column to a non-NULLvalue,
13-2
inline storage, 13-6
maximum size, 13-6
INSERT statements
binds of greater than 4000 bytes, 9-6
inserting
a row by initializing a LOB locator
internal persistent LOBs, 6-6
a row by initializing BFILE locator, 11-27
installing
DBFS, 25-1
FUSE, 25-7
Oracle Database, 25-1
interfaces for LOBs, see programmatic
environments, 10-2
ioctl, 25-11
IS NULL return value for LOBs, 7-12
IS NULL usage with LOBs, 7-12
ISNULL usage with LOBs, 7-12

J

Java, See JDBC, 10-2
JDBC

available LOB methods/properties, 10-4,
10-5

BFILE class, 10-28

BFILE streaming APls, 10-44

BFILE-streaming, 10-34

BLOB and CLOB classes, 10-28

calling DBMS_LOB package, 10-29

checking if BLOB is temporary, 12-38

CLOB streaming APIs, 10-43

empty LOBs, 10-47

encapsulating locators, 10-28

methods/properties for BLOB-streaming,
10-32

methods/properties for CLOBs

streaming, 10-33

modifying BLOB values, 10-32

modifying CLOB values, 10-33

modifyng internal LOBs with Java using
oracle.sql.BLOB/CLOB, 10-28

newStreamLob.java, 10-44

opening and closing BFILEs, 10-38

opening and closing CLOBSs, 10-37

opening and closing LOBs, 10-35

reading internal LOBs and external LOBs
(BFILES) with Java, 10-28

reading/examining BLOB values, 10-32

reading/examining CLOB values, 10-33

JDBC (continued)
reading/examining external LOB (BFILE)
values, 10-34
referencing LOBs, 10-30
streaming APIs for LOBs, 10-42
syntax references, 10-31
trimming LOBs, 10-41
using OracleResultSet to reference LOBs,
10-30
using OUT parameter from
OraclePreparedStatement to
reference LOBs, 10-30
writing to empty LOBs, 10-48
JDBC 3.0, 10-28
JDBC and Empty LOBs, 10-47

K

KEEP_DUPLICATES, 3-10, 3-18

L

length
getting BFILE, 11-22
persistent LOB, 12-22
LENGTH return value for LOBSs, 7-8
libaio
asynchronous 1/O through, 25-11
Linux
DBFS mounting interface, 25-6
listing
a directory, 25-5
loading
a LOB with BFILE data, 11-11
LOB with data from a BFILE, 12-6
loading BEFILES
using SQL*Loader, 16-3
loading data into LOBs
utilities, 16-1
LOB column cells
accessing, 2-1
LOB column states, 2-1
LOB columns
initializing to contain locator, 2-4
initializing to NULL or Empty, 13-1
LOB locator
copy semantics, 1-6
external LOBs (BFILESs), 1-6
internal LOBSs, 1-6
out-bind variables in OCI, 10-13
reference semantics, 1-6
LOB locators, 1-5
LOB locators, always stored in row, 13-6
LOB prefetching
JDBC, 10-29

ORACLE

Index

LOB reads, 15-6
LOB restrictions, 2-8
LOB storage

format of varying width character data, 13-4
inline and out-of-line storage properties, 13-6

LOB streaming

BLOB-streaming with JDBC, 10-32

LOB writes, 15-6
LOB writes unaligned, 15-6
LOBs

accesing with SQL, 2-7
accessing, 2-7
accessing using the data interface, 2-7
accessing using the locator interface, 2-8
attributes and object cache, 14-15
changing default tablespace storage, 16-7
data types versus LONG, 1-3
external (BFILES), 1-4
in the object cache, 14-15
interfaces, See programmatic environments,
10-2
internal
creating an object in object cache, 14-15
internal LOBs
CACHE / NOCACHE, 13-11
CHUNK, 13-13
ENABLE | DISABLE STORAGE IN
ROW, 13-15
initializing, 11-17
introduced, 1-4
locators, 2-3
locking before updating, 12-3, 12-23,
12-27, 12-29, 12-36, 12-37
LOGGING / NOLOGGING, 13-11
PCTVERSION, 13-9
setting to empty, 13-2
tablespace and LOB index, 13-8
tablespace and storage characteristics,
13-7
transactions, 1-4
loading data into, using SQL*Loader, 16-1
locator, 2-2
locators, 2-3, 14-3
locking rows, 2-2
maximum sizes allowed, 14-16
object cache, 14-16
piecewise operations, 14-6
read-consistent locators, 14-3
reason for using, 1-1
setting to contain a locator, 2-4
setting to NULL, 13-2
tables
creating indexes, 13-20
moving partitions, 13-20
splitting partitions, 13-20

Index-6

LOBs (continued)
unstructured data, 1-3
updated LOB locators, 14-5
value, 2-2
varying-width character data, 13-4
LOBS
opening and closing, 2-2
LOBs, data interface for remote, 9-25
LOBs, data interface in Java, 9-25
locators, 2-3
BFILE guidelines, 11-10
BFILEs, 11-9
BFILEs, two rows can refer to the same file,
11-10
external LOBs (BFILESs), 2-3
LOB, 1-5
LOB, cannot span transactions, 14-14
multiple, 14-3
OCl functions, 10-15, 10-21
Pro*COBOL precompiler statements, 10-27
providing in Pro*COBOL precompiler, 10-25
read consistent, updating, 14-3
read-consistent, 14-3, 14-9, 14-14
reading and writing to a LOB using, 14-12
selecting within a transaction, 14-13
selecting without current transaction, 14-12
setting column to contain, 2-4
transaction boundaries, 14-11
updated, 14-5, 14-9
updating, 14-14
locators, see if LOB locator is initialized
persistent LOBs, 12-26
locking, 25-11
locking a row containing a LOB, 2-2
LOGGING
LOB storage parameter, 3-9
migrating LONG-to-LOBs, 17-2
LOGGING / NOLOGGING, 13-11
LONG versus LOB data types, 1-3
LONG-to-LOB migration
ALTER TABLE, 17-4
benefits and concepts, 17-1
clustered tables, 17-9
LOGGING, 17-2
NULLs, 17-10
rebuilding indexes, 17-9
triggers, 17-9

M

Index

migrating (continued)

LONG-to-LOBs, indexing, 17-9
migrating to SecureFiles LOBs, 3-23, 3-24
migration of LONG to LOB in parallel, 17-5
mount points

listing, 23-10
mounted file systems

restrictions, 25-11
mounting

DBFS through fstab for Linux, 25-10

DBFS through fstab for Solaris, 25-10

the DBFS store, 25-7
multibyte character sets, using with the data

interface for LOBs, 9-11
multithreaded server

BFILEs, 2-10, 11-9

N

NCLOB
session collation settings, 7-6
NCLOBs
DBMS_LOB, offset and amount parameters
in characters, 10-6
modify using DBMS_LOB, 10-8
NewStreamLob.java, 10-44
NOCOMPRESS, 3-10, 3-18
NOCOPY, using to pass temporary LOB
parameters by reference, 15-3
NOLOGGING
LOB storage parameter, 3-9
non-partitioned file system
creating, 25-2
NORMALIZEPATH, 23-18
NULL LOB value, LOB storage for, 13-6
NULL LOB values, LOB storage properties for,
13-6
NULL LOB, restrictions calling OCI and
DBMS_LOB functions, 13-2

O

MAXSIZE, 3-8

migrating
LONG to LOBs, see LONG-t0o-LOB, 17-1
LONG-to-LOB using ALTER TABLE, 17-4
LONG-to-LOBSs, constraints maintained, 17-3

ORACLE

object cache, 14-15
creating an object in, 14-15
LOBs, 14-16
OCCI
compared to other interfaces, 10-2-10-4
LOB functionality, 10-16
OCCI Blob class
read, 10-18
write, 10-18
OCCI Clob class
read, 10-18
write, 10-18

OClI
available LOB functions, 10-2—10-4
character set rules, fixed-width and varying-
width, 10-11
functions for BFILEs, 10-14, 10-21
functions for temporary LOBSs, 10-14, 10-21
functions to modify internal LOB values,
10-13, 10-20
functions to open/close internal and external
LOBs, 10-15, 10-22
functions to read or examine internal and
external LOB values, 10-14, 10-21
LOB locator functions, 10-15, 10-21
NCLOB parameters, 10-12, 10-19
OCILobFileGetLength
CLOB and NCLOB input and output
length, 10-11
OClILobRead?2()
varying-width CLOB and NCLOB input
and amount amounts, 10-11
OCILobWrite2()
varying-width CLOB and NCLOB input
and amount amounts, 10-11,
10-18
offset and amount parameter rules
fixed-width character sets, 10-18
setting OCILobRead2(), OCILobWrite2() to
OCI_ucCs2ID, 10-10
using to work LOBs, 10-10
OCI functions on a NULL LOB restriction, 13-2
OCILobArrayRead(), 12-14
OCILobArrayWrite(), 12-30
OCIlLobGetChunkSize(), 14-17
OCIlLobLocator in assignment "=" operations,
10-12
OClLobLocator, out-bind variables, 10-13
ODP.NET, 10-4, 10-5

offset parameter, in DBMS_LOB operations, 10-6

OLEDB, 10-48
Online Filesystem Reorganization, 25-22
online redefinition
DBFS, 25-22
open
checking for open BFILEs with
FILEISOPEN(), 11-16
checking if BFILE is open with ISOPEN,
11-15
open, determining whether a LOB is open, 12-10
OpenCloselLob.java example, 10-39
opening
BFILEs using FILEOPEN, 11-14
BFILEs with OPEN, 11-13
opening and closing LOBs, 2-2
using JDBC, 10-35

ORACLE

Index

ORA-17098

empty LOBs and JDBC, 10-48
ORA-22992, 2-8
Oracle Call Interface, See OCI, 10-10
Oracle Database Installation, 25-1
oracle.sql.BFILE

BFILE-streaming, 10-34

JDBC methods to read/examine BFILES,

10-34

oracle.sql.BLOB

for modifying BLOB values, 10-32

reading/examining BLOB values, 10-32

See JDBC, 10-28
oracle.sql.BLOBs

BLOB-streaming, 10-32
oracle.sql.CLOB

CLOBs

streaming, 10-33
JDBC methods to read/examine CLOB
values, 10-33

modifying CLOB values, 10-33
oracle.sql.CLOBs

See JDBC, 10-28
OraclePreparedStatement, See JDBC, 10-30
OracleResultSet, See JDBC, 10-30
OraOLEDB, 10-48
out-of-line storage, 13-6

P

parallel DML support, 6-13
parallel LONG-to-LOB migration, 17-5
Parallel Online Redefinition, 3-25
partitioned DBFS file system

versus non-partitioned, 25-2
partitioned file system

creating, 25-2
partitioned index-organized tables

restrictions for LOB columns, 13-22
pattern

check if it exists in BFILE using instr, 11-20
pattern, if it exists IN LOB using (instr)

persistent LOBs, 12-22
PCTVERSION, 3-10, 13-9
performance

guidelines

reading/writing large data chunks,
temporary LOBs, 15-3

persistent LOBs, 12-26, 12-28
pipes, 25-11
PL/SQL, 10-1

and LOBs, semantics changes, 8-1

changing locator-data linkage, 8-3

CLOB variables in, 8-3

CLOB variables in PL/SQL, 8-3

Index-8

PL/SQL (continued)
CLOBs passed in like VARCHAR?Zs, 8-3
defining a CLOB Variable on a VARCHAR,
8-1
freeing temporary LOBs automatically and
manually, 8-3
PL/SQL functions, remote, 5-7, 8-5
PL/SQL packages for SecureFiles LOB, 3-25
PM schema, 2-4
polling, 11-17, 12-13, 12-26
prefetching data, 10-10
prerequisites
DBFS file system client, 25-3
print_media creation, 6-1
print_media table definition, 2-4
privileges
to create DBFS file system, 25-1
Pro*C/C++ precompiler
available LOB functions, 10-2—10-4
locators, 10-24
modifying internal LOB values, 10-23
opening and closing internal LOBs and
external LOBs (BFILEs), 10-25
providing an allocated input locator pointer,
10-22
reading or examining internal and external
LOB values, 10-24
statements for BFILES, 10-24
statements for temporary LOBs, 10-24
Pro*COBOL precompiler
available LOB functions, 10-2—10-4
locators, 10-27
modifying internal LOB values, 10-26
providing an allocated input locator, 10-25
reading or examining internal and external
LOBs, 10-27
statements for BFILEs, 10-27
temporary LOBs, 10-27
programmatic environments
available functions, 10-2
compared, 10-2
programmatic environments for LOBs, 10-1

Q

Query APlIs, 23-8

R

read consistency
LOBs, 14-3
read-consistent locators, 14-2, 14-3, 14-9, 14-14
reading
large data chunks, temporary LOBs, 15-3
portion of BFILE data using substr, 11-19

ORACLE

Index

reading, data from a LOB
persistent LOBs, 12-13
reading, portion of LOB using substr
persistent LOBs, 12-21
reference semantics, 6-4, 6-5
BFILEs enables multiple BFILE columns for
each record, 11-5
registered store
mounting, 23-9
unregistering, 23-9
remote built-in functions, 5-4
remote LOBs, 2-8
remote PL/SQL functions, 5-7, 8-5
removing
directories, 25-6
files, 25-6
restrictions
binds of more than 4000 bytes, 9-7
cannot call OCI or DBMS_LOB functions on
a NULL LOB, 13-2
clustered tables, 17-9
index-organized tables and LOBs, 13-22
indexes, 17-9
LOBs, 2-8
triggers, 17-9
restrictions on mounted file systems, 25-11
restrictions on remote LOBSs, 2-8
RETENTION, 3-8, 3-18
RETENTION ignored in an MSSM tablespace,
13-10
retrieving LOB access statistics, 15-6
RETURNING clause, using with INSERT to
initialize a LOB, 13-2

S

Samba, 25-11
sample schema for examples, 6-1
SECUREFILE
ALTER TABLE parameters, 3-16
LOB storage parameter, 3-7
SecureFiles Encryption, 3-3
SecureFiles LOB
CREATE TABLE parameter, 3-3
PL/SQL, 3-25
SecureFiles LOB Storage, 3-2
SecureFiles LOBs
initialization parameters, 3-22
SecureFiles LOBs and BasicFiles LOBs, 1-8
SecureFiles Store
setting up, 21-1
security
BFILEs, 11-6
BFILEs using SQL DDL, 11-8
BFILEs using SQL DML, 11-8

SELECT statement
read consistency, 14-3
semantics
copy-based for internal LOBSs, 6-4
copying and referencing, 1-6
for internal and external LOBs, 1-6
reference based for BFILES, 11-5
semistructured data, 1-1
session collation settings
CLOB and NCLOB, 7-6
SESSION_MAX_OPEN_FILES parameter, 16-7
setting
internal LOBs to empty, 13-2
LOBs to NULL, 13-2
overrides for NLS_LANG variable, 10-10
simple structured data, complex structured data,
1-1
Solaris
mounting interface, 25-6
Solaris-Specific privileges, 25-7
Solaris 11 SRU7
installing FUSE, 25-7
spec.sql script, 24-7
SQL
character functions, improved, 7-1
features where LOBs cannot be used, 7-10
SQL DDL
BFILE security, 11-8
SQL DML
BFILE security, 11-8
SQL functions on LOBs
return type, 7-8
return value, 7-8
temporary LOBs returned, 7-8
SQL semantics and LOBs, 7-10
SQL semantics supported for use with LOBs, 7-2
SQL*Loader, 16-3
conventional path load, 16-2
direct-path load, 16-2
LOBs
loading data into, 16-1
statistics, access, 15-5
streaming
write, 12-28
streaming APIs
NewStreamLob.java, 10-44
using JDBC and BFILEs, 10-44
using JDBC and CLOBs, 10-43
using JDBC and LOBs, 10-42
symbolic links, rules with DIRECTORY objects
and BFILEs, 16-6
system owned object, See DIRECTORY object,
11-6

ORACLE

Index

T

TaBleFileSystem Store Provider ("tbfs"), 24-3
tablespace storage
changing, 16-7
TBFS.SQL script, 24-6
TBL.SQL script, 24-6
TDE, 3-3
temporary BLOB
checking if temporary using JDBC, 12-38
temporary LOBs, 16-6
checking if LOB is temporary, 12-38
DBMS_LOB available functions/procedures,
10-9
OCl functions, 10-14, 10-21
Pro*C/C++ precompiler embedded SQL
statements, 10-24
Pro*COBOL precompiler statements, 10-27
returned from SQL functions, 7-8
TO_BLOB(),TO_CHAR(), TO_NCHAR(), 8-2
TO_CLOB()
converting
VARCHAR2,NVARCHAR2,NCLOB
to CLOB, 8-2
TO_NCLOBY(), 8-2
transaction boundaries
LOB locators, 14-11
transaction IDs, 14-12
transactions
external LOBs do not participate in, 1-5
IDs of locators, 14-11
internal LOBs participate in database
transactions, 1-4
LOB locators cannot span, 14-14
locators with non-serializable, 14-12
locators with serializable, 14-12
transferring LOB data, 16-5
Transparent Data Encryption (TDE), 3-3
transparent read, 22-17
triggers
LONG-to-LOB migration, 17-9
trimming LOB data
persistent LOBs, 12-35
trimming LOBs using JDBC, 10-41

U

UCS2 Unicode character set

varying width character data, 13-4
UNICODE

VARCHAR?2 and CLOBs support, 7-6
unmounting

a file system, 25-9
unstructured data, 1-1, 1-3

Index-10

UPDATE statements
binds of greater than 4000 bytes, 9-6
updated locators, 14-5, 14-9
updating
avoid the LOB with different locators, 14-8
LOB values using one locator, 14-8
LOB values, read consistent locators, 14-3
LOB with PL/SQL bind variable, 14-9
LOBs using SQL and DBMS_LOB, 14-6
locators, 14-14
locking before, 12-23
locking prior to, 12-3, 12-35, 12-37
using SQL character functions, 7-1

V

V$NLS_VALID_VALUES, 10-7
VARCHAR?2
accessing CLOB data when treated as, 8-1
also RAW, applied to CLOBs and BLOBs,
7-11
defining CLOB variable on, 8-1
VARCHARZ2, using SQL functions and operators
with LOBs, 7-2
VARRAY
LOB restriction, 2-8

ORACLE

Index

VARRAYs

stored as LOBs, 1-7
varying-width character data, 13-4
views on DIRECTORY object, 11-8

wW

wallet
HS store wallet, 22-2
Wallet,Oracle, 25-19
WebDAV
access to DBFS, 25-16
WHERE Clause Usage with LOBs, 7-12
writing
datato a LOB, 12-28
large data chunks, temporary LOBs, 15-3
singly or piecewise, 12-26

Z

Zero-copy Input/Output for SecureFiles LOBS,
10-29

11

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Getting Started
	1 Introduction to Large Objects and SecureFiles
	What Are Large Objects?
	Why Use Large Objects?
	Data Types that Use Large Objects
	LOBs Used for Semistructured Data
	LOBs Used for Unstructured Data

	Why Not Use LONGs?
	Different Kinds of LOBs
	Internal LOBs
	External LOBs and the BFILE Data Type

	LOB Locators
	Database Semantics for Internal and External LOBs
	Large Object Data Types
	About Object Data Types and LOBs
	Storage and Creation of Other Data Types with LOBs
	VARRAYs Stored as LOBs

	BasicFiles and SecureFiles LOBs
	Database File System (DBFS)

	2 Working with LOBs
	LOB Column States
	Locking a Row Containing a LOB
	LOB Open and Close Operations
	LOB Locator and LOB Value
	Using the Data Interface for LOBs
	Use the LOB Locator to Access and Modify LOB Values

	LOB Locators and BFILE Locators
	Table for LOB Examples: The PM Schema print_media Table
	LOB Column Initialization
	Initializing a Persistent LOB Column
	Initializing BFILEs

	LOB Access
	Accessing a LOB Using SQL
	Accessing a LOB Using the Data Interface
	Accessing a LOB Using the Locator Interface

	LOB Rules and Restrictions
	Rules for LOB Columns
	Restrictions for LOB Operations

	3 Using Oracle LOB Storage
	LOB Storage
	BasicFiles LOB Storage
	SecureFiles LOB Storage
	About Advanced LOB Compression
	About Advanced LOB Deduplication
	About SecureFiles Encryption

	CREATE TABLE with LOB Storage
	CREATE TABLE LOB Storage Parameters
	CREATE TABLE and SecureFiles LOB Features
	CREATE TABLE with Advanced LOB Compression
	Usage Notes for Advanced LOB Compression
	Examples of CREATE TABLE and Advanced LOB Compression

	CREATE TABLE with Advanced LOB Deduplication
	Usage Notes for Advanced LOB Deduplication
	Examples of CREATE TABLE and Advanced LOB Deduplication

	CREATE TABLE with SecureFiles Encryption
	Usage Notes for SecureFiles Encryption
	Examples of CREATE TABLE and SecureFiles Encryption

	ALTER TABLE with LOB Storage
	About ALTER TABLE and LOB Storage
	BNF for the ALTER TABLE Statement
	ALTER TABLE LOB Storage Parameters
	ALTER TABLE SecureFiles LOB Features
	ALTER TABLE with Advanced LOB Compression
	Usage Notes for Advanced LOB Compression
	Examples of ALTER TABLE and Advanced LOB Compression

	ALTER TABLE with Advanced LOB Deduplication
	Usage Notes for Advanced LOB Deduplication
	Examples of ALTER TABLE and Advanced LOB Deduplication

	ALTER TABLE with SecureFiles Encryption
	Usage Notes for SecureFiles Encryption
	Examples of ALTER TABLE and SecureFiles Encryption

	Initialization, Compatibility, and Upgrading
	Compatibility and Upgrading
	Initialization Parameter for SecureFiles LOBs

	Migrating Columns from BasicFiles LOBs to SecureFiles LOBs
	Preventing Generation of REDO Data When Migrating to SecureFiles LOBs
	Online Redefinition for BasicFiles LOBs
	Online Redefinition Example for Migrating Tables with BasicFiles LOBs
	Redefining a SecureFiles LOB in Parallel

	PL/SQL Packages for LOBs and DBFS
	The DBMS_LOB Package Used with SecureFiles LOBs and DBFS
	DBMS_LOB Constants Used with SecureFiles LOBs and DBFS
	DBMS_LOB Subprograms Used with SecureFiles LOBs and DBFS
	DBMS_SPACE Package
	DBMS_SPACE.SPACE_USAGE()

	4 Operations Specific to Persistent and Temporary LOBs
	Persistent LOB Operations
	Inserting a LOB into a Table
	Selecting a LOB from a Table

	Temporary LOB Operations
	Creating and Freeing a Temporary LOB

	Creating Persistent and Temporary LOBs in PL/SQL
	Freeing Temporary LOBs in OCI

	5 Distributed LOBs
	Working with Remote LOBs
	Working with Remote LOB Columns
	Create table as select or insert as select
	Functions on remote LOBs returning scalars
	Data Interface for remote LOBs

	Working with Remote Locator
	Using Local and Remote locators as bind with queries and DML on remote tables
	Restrictions when using remote LOB locators

	SQL Semantics with LOBs in Remote Tables
	Built-in Functions for Remote LOBs and BFILEs
	Passing Remote Locator to Built in SQL Functions

	Working with Remote LOBs in PL/SQL
	PL/SQL Functions for Remote LOBs and BFILEs
	Restrictions on Remote User-Defined Functions
	Remote Functions in PL/SQL, OCI, and JDBC

	Using Remote Locator in PL/SQL
	Using Remote Locators with DBMS_LOB
	Restrictions on Using Remote Locators with DBMS_LOB

	Using Remote Locators with OCILOB API

	6 DDL and DML Statements with LOBs
	Creating a Table Containing One or More LOB Columns
	Creating a Nested Table Containing a LOB
	Inserting a Row by Selecting a LOB From Another Table
	Inserting a LOB Value Into a Table
	Inserting a Row by Initializing a LOB Locator Bind Variable
	About Inserting Rows with LOB Locator Bind Variables
	PL/SQL: Inserting a Row by Initializing a LOB Locator Bind Variable
	C (OCI): Inserting a Row by Initializing a LOB Locator Bind Variable
	COBOL (Pro*COBOL): Inserting a Row by Initializing a LOB Locator Bind Variable
	C/C++ (Pro*C/C++): Inserting a Row by Initializing a LOB Locator Bind Variable
	Java (JDBC): Inserting a Row by Initializing a LOB Locator Bind Variable

	Updating a LOB with EMPTY_CLOB() or EMPTY_BLOB()
	Updating a Row by Selecting a LOB From Another Table
	Parallel DDL and Parallel DML(PDML) Support for LOBs

	Part II Value Semantics LOBs
	7 SQL Semantics and LOBs
	About Using LOBs in SQL
	SQL Functions and Operators Supported for Use with LOBs
	About SQL Functions and Operators for LOBs
	Implicit Conversion of CLOB to CHAR Types
	CLOBs and NCLOBs Do Not Follow Session Collation Settings
	UNICODE Support
	Codepoint Semantics
	Return Values for SQL Semantics on LOBs
	LENGTH Return Value for LOBs

	Implicit Conversion of LOB Data Types in SQL
	Implicit Conversion Between CLOB and NCLOB Data Types in SQL

	Unsupported Use of LOBs in SQL
	VARCHAR2 and RAW Semantics for LOBs
	About VARCHAR2 and RAW Semantics for LOBs
	LOBs Returned from SQL Functions
	IS NULL and IS NOT NULL Usage with VARCHAR2s and CLOBs
	WHERE Clause Usage with LOBs

	Built-in Functions for Remote LOBs and BFILEs

	8 PL/SQL Semantics for LOBs
	PL/SQL Statements and Variables
	Implicit Conversions Between CLOB and VARCHAR2
	Explicit Data Type Conversion Functions
	VARCHAR2 and CLOB in PL/SQL Built-In Functions

	PL/SQL Functions for Remote LOBs and BFILEs

	9 Data Interface for Persistent LOBs
	Overview of the Data Interface for Persistent LOBs
	Benefits of Using the Data Interface for Persistent LOBs
	Using the Data Interface for Persistent LOBs in PL/SQL
	About Using the Data Interface for Persistent LOBs in PL/SQL
	Guidelines for Accessing LOB Columns Using the Data Interface in SQL and PL/SQL
	Implicit Assignment and Parameter Passing
	Passing CLOBs to SQL and PL/SQL Built-In Functions
	Explicit Data Type Conversion
	Calling PL/SQL and C Procedures from SQL
	Calling PL/SQL and C Procedures from PL/SQL
	Binds of All Sizes in INSERT and UPDATE Operations
	4000 Byte Limit on Results of a SQL Operator
	Example of 4000 Byte Result Limit of a SQL Operator
	Restrictions on Binds of More Than 4000 Bytes
	Example: PL/SQL - Using Binds of More Than 4000 Bytes in INSERT and UPDATE
	Using the Data Interface for LOBs with INSERT, UPDATE, and SELECT Operations
	Using the Data Interface for LOBs in Assignments and Parameter Passing
	Using the Data Interface for LOBs with PL/SQL Built-In Functions

	The Data Interface Used for Persistent LOBs in OCI
	LOB Data Types Bound in OCI
	LOB Data Types Defined in OCI
	Multibyte Character Sets Used in OCI with the Data Interface for LOBs
	Getting LOB Length
	OCI Functions Used to Perform INSERT or UPDATE on LOB Columns
	Performing Simple INSERTs or UPDATEs in One Piece
	Using Piecewise INSERTs and UPDATEs with Polling
	Performing Piecewise INSERTs and UPDATEs with Callback
	Array INSERT and UPDATE Operations

	The Data Interface Used to Fetch LOB Data in OCI
	Simple Fetch in One Piece
	Performing a Piecewise Fetch with Polling
	Performing a Piecewise with Callback
	Array Fetch

	PL/SQL and C Binds from OCI
	Example: C (OCI) - Binds of More than 4000 Bytes for INSERT and UPDATE
	Using the Data Interface for LOBs in PL/SQL Binds from OCI on LOBs
	Binding LONG Data for LOB Columns in Binds Greater Than 4000 Bytes
	Binding LONG Data to LOB Columns Using Piecewise INSERT with Polling
	Binding LONG Data to LOB Columns Using Piecewise INSERT with Callback
	Binding LONG Data to LOB Columns Using an Array INSERT
	Selecting a LOB Column into a LONG Buffer Using a Simple Fetch
	Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch with Polling
	Selecting a LOB Column into a LONG Buffer Using Piecewise Fetch with Callback
	Selecting a LOB column into a LONG buffer using piecewise FETCH with callback: Example with Length
	Selecting a LOB Column into a LONG Buffer Using an Array Fetch

	The Data Interface Used with Persistent LOBs in Java
	The Data Interface Used with Remote LOBs
	About the Data Interface with Remote LOBs
	Non-Supported Syntax
	Remote Data Interface Example in PL/SQL
	Remote Data Interface Example in OCI
	Remote Data Interface Examples in JDBC

	Part III Reference Semantics LOBs
	10 Overview of Supplied LOB APIs
	Programmatic Environments That Support LOBs
	Comparing the LOB Interfaces
	Using PL/SQL (DBMS_LOB Package) to Work With LOBs
	Provide a LOB Locator Before Running the DBMS_LOB Routine
	Guidelines for Offset and Amount Parameters in DBMS_LOB Operations
	Determining Character Set ID
	PL/SQL Functions and Procedures for LOBs
	PL/SQL Functions and Procedures to Modify LOB Values
	PL/SQL Functions and Procedures for Introspection of LOBs
	PL/SQL Operations on Temporary LOBs
	PL/SQL Read-Only Functions and Procedures for BFILEs
	PL/SQL Functions and Procedures to Open and Close Internal and External LOBs

	Using OCI to Work With LOBs
	Prefetching of LOB Data and Length
	Setting the CSID Parameter for OCI LOB APIs
	Fixed-Width and Varying-Width Character Set Rules for OCI
	Other Operations
	NCLOBs in OCI

	OCILobLoadFromFile2() Amount Parameter
	OCILobRead2() Amount Parameter
	OCILobLocator Pointer Assignment
	LOB Locators in Defines and Out-Bind Variables in OCI
	OCI Functions That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs
	OCI Functions to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values
	OCI Functions to Read or Examine Persistent LOB and External LOB (BFILE) Values
	OCI Functions for Temporary LOBs
	OCI Read-Only Functions for BFILEs
	OCI LOB Locator Functions
	Topic
	OCI Functions to Open and Close Internal and External LOBs
	OCI LOB Examples
	Further Information About OCI

	Using C++ (OCCI) to Work With LOBs
	OCCI Classes for LOBs
	Clob Class
	Blob Class
	Bfile Class

	Fixed-Width Character Set Rules
	Varying-Width Character Set Rules
	Offset and Amount Parameters for Other OCCI Operations
	NCLOBs in OCCI

	Amount Parameter for OCCI LOB copy() Methods
	Amount Parameter for OCCI read() Operations
	Further Information About OCCI
	OCCI Methods That Operate on BLOBs, BLOBs, NCLOBs, and BFILEs
	OCCI Methods to Modify Persistent LOB (BLOB, CLOB, and NCLOB) Values
	OCCI Methods to Read or Examine Persistent LOB and BFILE Values
	OCCI Read-Only Methods for BFILEs
	Other OCCI LOB Methods
	OCCI Methods to Open and Close Internal and External LOBs

	Using C/C++ (Pro*C) to Work With LOBs
	Providing an Allocated Input Locator Pointer That Represents LOB
	Pro*C/C++ Statements That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs
	Pro*C/C++ Embedded SQL Statements to Modify Persistent LOB Values
	Pro*C/C++ Embedded SQL Statements for Introspection of LOBs
	Pro*C/C++ Embedded SQL Statements for Temporary LOBs
	Pro*C/C++ Embedded SQL Statements for BFILEs
	Pro*C/C++ Embedded SQL Statements for LOB Locators
	Pro*C/C++ Embedded SQL Statements to Open and Close LOBs

	Using COBOL (Pro*COBOL) to Work With LOBs
	Providing an Allocated Input Locator Pointer That Represents LOB
	Pro*COBOL Statements That Operate on BLOBs, CLOBs, NCLOBs, and BFILEs
	Pro*COBOL Embedded SQL Statements to Modify Persistent LOB Values
	Pro*COBOL Embedded SQL Statements for Introspection of LOBs
	Pro*COBOL Embedded SQL Statements for Temporary LOBs
	Pro*COBOL Embedded SQL Statements for BFILEs
	Pro*COBOL Embedded SQL Statements for LOB Locators
	Pro*COBOL Embedded SQL Statements for Opening and Closing LOBs and BFILEs

	Using Java (JDBC) to Work With LOBs
	Modifying Internal Persistent LOBs Using Java
	Reading Internal Persistent LOBs and External LOBs (BFILEs) With Java
	BLOB, CLOB, and BFILE Classes

	Calling DBMS_LOB Package from Java (JDBC)
	Prefetching LOBs to Improve Performance
	Zero-Copy Input/Output for SecureFiles to Improve Performance
	Zero-Copy Input/Output on the Server
	Zero-Copy Input/Output in the JDBC Thin Driver
	JDBC-OCI Driver Considerations

	Referencing LOBs Using Java (JDBC)
	Using OracleResultSet: BLOB and CLOB Objects Retrieved

	JDBC Syntax References and Further Information
	JDBC Methods for Operating on LOBs
	JDBC oracle.sql.BLOB Methods to Modify BLOB Values
	JDBC oracle.sql.BLOB Methods to Read or Examine BLOB Values
	JDBC oracle.sql.BLOB Methods and Properties for Streaming BLOB Data
	JDBC oracle.sql.CLOB Methods to Modify CLOB Values
	JDBC oracle.sql.CLOB Methods to Read or Examine CLOB Value
	JDBC oracle.sql.CLOB Methods and Properties for Streaming CLOB Data
	JDBC oracle.sql.BFILE Methods to Read or Examine External LOB (BFILE) Values
	JDBC oracle.sql.BFILE Methods and Properties for Streaming BFILE Data
	JDBC Temporary LOB APIs
	JDBC: Opening and Closing LOBs
	JDBC: Opening and Closing BLOBs
	Opening the BLOB Using JDBC
	Checking If the BLOB Is Open Using JDBC
	Closing the BLOB Using JDBC

	JDBC: Opening and Closing CLOBs
	Opening the CLOB Using JDBC
	Checking If the CLOB Is Open Using JDBC
	Closing the CLOB Using JDBC

	JDBC: Opening and Closing BFILEs
	Opening BFILEs
	Checking If the BFILE Is Open
	Closing the BFILE
	Usage Example (OpenCloseLob.java)

	Truncating LOBs Using JDBC
	JDBC: Truncating BLOBs
	JDBC: Truncating CLOBs

	JDBC BLOB Streaming APIs
	JDBC CLOB Streaming APIs
	BFILE Streaming APIs
	JDBC BFILE Streaming Example (NewStreamLob.java)

	JDBC and Empty LOBs

	Oracle Provider for OLE DB (OraOLEDB)
	Overview of Oracle Data Provider for .NET (ODP.NET)

	11 LOB APIs for BFILE Operations
	Supported Environments for BFILE APIs
	About Accessing BFILEs
	Directory Objects
	Initializing a BFILE Locator
	How to Associate Operating System Files with a BFILE

	BFILENAME and Initialization
	Characteristics of the BFILE Data Type
	DIRECTORY Name Specification
	On Windows Platforms

	BFILE Security
	Ownership and Privileges
	Read Permission on a DIRECTORY Object
	SQL DDL for BFILE Security
	SQL DML for BFILE Security
	Catalog Views on Directories
	Guidelines for DIRECTORY Usage
	BFILEs in Shared Server (Multithreaded Server) Mode
	External LOB (BFILE) Locators
	When Two Rows in a BFILE Table Refer to the Same File
	BFILE Locator Variable
	Guidelines for BFILEs

	About Loading a LOB with BFILE Data
	About Opening a BFILE with OPEN
	About Opening a BFILE with FILEOPEN
	About Determining Whether a BFILE Is Open Using ISOPEN
	About Determining Whether a BFILE Is Open with FILEISOPEN
	About Displaying BFILE Data
	About Reading Data from a BFILE
	About Reading a Portion of BFILE Data Using SUBSTR
	Comparing All or Parts of Two BFILES
	Checking If a Pattern Exists in a BFILE Using INSTR
	Determining Whether a BFILE Exists
	Getting the Length of a BFILE
	About Assigning a BFILE Locator
	Getting Directory Object Name and File Name of a BFILE
	About Updating a BFILE by Initializing a BFILE Locator
	Closing a BFILE with FILECLOSE
	Closing a BFILE with CLOSE
	Closing All Open BFILEs with FILECLOSEALL
	About Inserting a Row Containing a BFILE

	12 Using LOB APIs
	Supported Environments
	About Appending One LOB to Another
	About Appending Buffer Content to LOB
	About Determining Character Set Form
	About Determining Character Set ID
	Loading a LOB with Data from a BFILE
	About Loading a BLOB with Data from a BFILE
	Loading a CLOB or NCLOB with Data from a BFILE
	About PL/SQL: Loading Character Data from a BFILE into a LOB
	About PL/SQL: Loading Segments of Character Data into Different LOBs

	Determining Whether a LOB is Open
	Java (JDBC): Checking If a LOB Is Open
	Checking If a CLOB Is Open
	Checking If a BLOB Is Open

	About Displaying LOB Data
	About Reading Data from a LOB
	About LOB Array Read
	Reading a Portion of a LOB (SUBSTR)
	Comparing All or Part of Two LOBs
	Patterns: Checking for Patterns in a LOB Using INSTR
	Length: Determining the Length of a LOB
	Copying All or Part of One LOB to Another LOB
	Copying a LOB Locator
	Equality: Checking If One LOB Locator Is Equal to Another
	About Determining Whether LOB Locator Is Initialized
	About Appending to a LOB
	About Writing Data to a LOB
	LOB Array Write
	About Trimming LOB Data
	About Erasing Part of a LOB
	Determining Whether a LOB instance Is Temporary
	Java (JDBC): Determining Whether a BLOB Is Temporary

	Converting a BLOB to a CLOB
	Converting a CLOB to a BLOB
	Ensuring Read Consistency

	Part IV Application Design with LOBs
	13 LOB Storage with Applications
	Tables That Contain LOBs
	Persistent LOBs Initialized to NULL or Empty
	Setting a Persistent LOB to NULL
	Setting a Persistent LOB to Empty

	Initializing LOBs
	Initializing Persistent LOB Columns and Attributes to a Value
	Initializing BFILEs to NULL or a File Name
	Restriction on First Extent of a LOB Segment

	Data Types for LOB Columns
	LOBs Compared to LONG and LONG RAW Types
	Varying-Width Character Data Storage in LOBs
	Converting Character Sets Implicitly with LOBs

	LOB Storage Parameters
	Inline and Out-of-Line LOB Storage
	Defining Tablespace and Storage Characteristics for Persistent LOBs
	Assigning a LOB Data Segment Name

	LOB Storage Characteristics for LOB Column or Attribute
	TABLESPACE and LOB Index
	Tablespace for LOB Index in Non-Partitioned Table

	PCTVERSION
	RETENTION Parameter for BasicFiles LOBs
	RETENTION Parameter for SecureFiles LOBs
	CACHE / NOCACHE / CACHE READS
	CACHE / NOCACHE / CACHE READS: LOB Values and Buffer Cache

	LOGGING / NOLOGGING Parameter for BasicFiles LOBs
	LOBs Always Generate Undo for LOB Index Pages
	When LOGGING is Set Oracle Generates Full Redo for LOB Data Pages
	NOLOGGING is Useful for Bulk Loads or Inserts.

	LOGGING/FILESYSTEM_LIKE_LOGGING for SecureFiles LOBs
	CACHE Implies LOGGING
	SecureFiles and an Efficient Method of Generating REDO and UNDO
	FILESYSTEM_LIKE_LOGGING is Useful for Bulk Loads or Inserts

	CHUNK
	The Value of CHUNK
	Space Considerations
	Performance Considerations

	Set INITIAL and NEXT to Larger than CHUNK

	ENABLE or DISABLE STORAGE IN ROW Clause
	Guidelines for ENABLE or DISABLE STORAGE IN ROW

	LOB Columns Indexing
	Domain Indexing on LOB Columns
	Text Indexes on LOB Columns
	Function-Based Indexes on LOBs
	Extensible Indexing on LOB Columns
	Extensible Optimizer

	Oracle Text Indexing Support for XML

	LOB Manipulation in Partitioned Tables
	About Manipulating LOBs in Partitioned Tables
	Partitioning a Table Containing LOB Columns
	Creating an Index on a Table Containing Partitioned LOB Columns
	Moving Partitions Containing LOBs
	Splitting Partitions Containing LOBs
	Merging Partitions Containing LOBs

	LOBs in Index Organized Tables
	Restrictions for LOBs in Partitioned Index-Organized Tables
	Updating LOBs in Nested Tables

	14 Advanced Design Considerations
	Opening Persistent LOBs with the OPEN and CLOSE Interfaces
	Index Performance Benefits of Explicitly Opening a LOB
	Closing Explicitly Open LOB Instances

	Read-Consistent Locators
	A Selected Locator Becomes a Read-Consistent Locator
	Example of Updating LOBs and Read-Consistency
	Example of Updating LOBs Through Updated Locators
	Example of Updating a LOB Using SQL DML and DBMS_LOB
	Example of Using One Locator to Update the Same LOB Value
	Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable

	LOB Locators and Transaction Boundaries
	About LOB Locators and Transaction Boundaries
	Read and Write Operations on a LOB Using Locators
	Selecting the Locator Outside of the Transaction Boundary
	Selecting the Locator Within a Transaction Boundary
	LOB Locators Cannot Span Transactions
	Example of Locator Not Spanning a Transaction

	LOBs in the Object Cache
	Terabyte-Size LOB Support
	About Terabyte-Size LOB Support
	Maximum Storage Limit for Terabyte-Size LOBs
	Using Terabyte-Size LOBs with JDBC
	Using Terabyte-Size LOBs with the DBMS_LOB Package
	Using Terabyte-Size LOBs with OCI

	Guidelines for Creating Gigabyte LOBs
	Creating a Tablespace and Table to Store Gigabyte LOBs

	15 Performance Guidelines
	LOB Performance Guidelines
	All LOBs
	Persistent LOBs
	Temporary LOBs

	Moving Data to LOBs in a Threaded Environment
	LOB Access Statistics
	Example of Retrieving LOB Access Statistics

	Part V LOB Administration
	16 Managing LOBs: Database Administration
	Database Utilities for Loading Data into LOBs
	About Using SQL*Loader to Load LOBs
	About Using SQL*Loader to Populate a BFILE Column
	About Using Oracle Data Pump to Transfer LOB Data

	Temporary LOB Management
	BFILEs Management
	Rules for Using Directory Objects and BFILEs
	Setting Maximum Number of Open BFILEs

	Changing Tablespace Storage for a LOB
	Managing LOB Signatures

	17 Migrating Columns from LONGs to LOBs
	Benefits of Migrating LONG Columns to LOB Columns
	Preconditions for Migrating LONG Columns to LOB Columns
	Dropping a Domain Index on a LONG Column Before Converting to a LOB
	Preventing Generation of Redo Space on Tables Converted to LOB Data Types

	Determining how to Optimize the Application Using utldtree.sql
	Converting Tables from LONG to LOB Data Types
	Migration Issues
	Using ALTER TABLE to Convert LONG Columns to LOB Columns
	Copying a LONG to a LOB Column Using the TO_LOB Operator
	Online Redefinition of Tables with LONG Columns
	Using Oracle Data Pump to Migrate a Database

	Migrating Applications from LONGs to LOBs
	About Migrating Applications from Longs to LOBs
	LOB Columns Are Not Allowed in Clustered Tables
	LOB Columns Are Not Allowed in AFTER UPDATE OF Triggers
	Rebuilding Indexes on Columns Converted from LONG to LOB Data Types
	Empty LOBs Compared to NULL and Zero Length LONGs
	Overloading with Anchored Types
	Some Implicit Conversions Are Not Supported for LOB Data Types

	Part VI Oracle File System (OFS) Server
	18 Introducing Network File System (NFS)
	Prerequisites to Access Storage Through NFS Server
	NFS Security
	Kerberos
	Configuring Kerberos Server in Linux

	19 Using OFS
	Limitations of using OFS
	OFS Configuration Parameters
	OFS Client Interface
	DBMS_FS Package
	Views for OFS

	Part VII Database File System (DBFS)
	20 Introducing the Database File System
	Why a Database File System?
	What Is Database File System (DBFS)?
	About DBFS
	DBFS Server
	DBFS Client

	What Is a Content Store?

	21 DBFS SecureFiles Store
	Setting Up a SecureFiles Store
	About Managing Permissions
	Creating or Setting Permissions
	Creating a SecureFiles File System Store
	Accessing Tables that Hold SecureFiles System Store Data
	Initializing SecureFiles Store File Systems
	Comparison of SecureFiles LOBs to BasicFiles LOBs

	Using a DBFS SecureFiles Store File System
	DBFS Content API Working Example
	Dropping SecureFiles Store File Systems

	About DBFS SecureFiles Store Package, DBMS_DBFS_SFS
	Database File System (DBFS)— POSIX File Locking
	About Advisory Locking
	About Mandatory Locking
	File Locking Support
	Compatibility and Migration Factors of Database Filesystem—File Locking
	Examples of Database Filesystem—File Locking
	File Locking Behavior
	Scheduling File Locks
	Greedy Scheduling
	Fair Scheduling

	22 DBFS Hierarchical Store
	About the Hierarchical Store Package, DBMS_DBFS_HS
	Ways to Use DBFS Hierarchial Store
	Setting up the Store
	Managing a HS Store Wallet
	Creating, Registering, and Mounting the Store

	Using the Hierarchical Store
	Using Hierarchical Store as a File System
	Using Hierarchical Store as an Archive Solution For SecureFiles LOBs
	Dropping a Hierarchical Store
	Compression to Use with the Hierarchical Store
	Program Example Using Tape
	Program Example Using Amazon S3

	Database File System Links
	About Database File System Links
	Ways to Create Database File System Links
	Database File System Links Copy
	Copying a Linked LOB Between Tables
	Online Redefinition and DBFS Links
	Transparent Read

	The DBMS_DBFS_HS Package
	Constants for DBMS_DBFS_HS Package
	Methods for DBMS_DBFS_HS Package

	Views for DBFS Hierarchical Store
	DBA Views
	User Views

	23 DBFS Content API
	Overview of DBFS Content API
	Stores and DBFS Content API
	Getting Started with DBMS_DBFS_CONTENT Package
	DBFS Content API Role
	Path Name Constants and Types
	Path Properties
	Content IDs
	Path Name Types
	Store Features
	Lock Types
	Standard Properties
	Optional Properties
	User-Defined Properties
	Property Access Flags
	Exceptions
	Property Bundles
	Store Descriptors

	Administrative and Query APIs
	Registering a Content Store
	Unregistering a Content Store
	Mounting a Registered Store
	Unmounting a Previously Mounted Store
	Listing all Available Stores and Their Features
	Listing all Available Mount Points
	Looking Up Specific Stores and Their Features

	Querying DBFS Content API Space Usage
	DBFS Content API Session Defaults
	DBFS Content API Interface Versioning
	Notes on DBFS Content API Path Names
	DBFS Content API Creation Operations
	DBFS Content API Deletion Operations
	DBFS Content API Path Get and Put Operations
	DBFS Content API Rename and Move Operations
	Directory Listings
	DBFS Content API Directory Navigation and Search
	DBFS Content API Locking Operations
	DBFS Content API Access Checks
	DBFS Content API Abstract Operations
	DBFS Content API Path Normalization
	DBFS Content API Statistics Support
	DBFS Content API Tracing Support
	Resource and Property Views

	24 Creating Your Own DBFS Store
	Overview of DBFS Store Creation and Use
	DBFS Content Store Provider Interface (DBFS Content SPI)
	Creating a Custom Provider
	Mechanics
	Installation and Setup
	TBFS Use
	TBFS Internals

	TBFS.SQL
	TBL.SQL
	spec.sql
	body.sql
	capi.sql

	25 Using DBFS
	DBFS Installation
	Creating a DBFS File System
	Privileges Required to Create a DBFS File System
	Advantages of Non-Partitioned Versus Partitioned DBFS File Systems
	Creating a Non-Partitioned File System
	Creating a Partitioned File System
	Dropping a File System

	DBFS File System Access
	DBFS Client Prerequisites
	DBFS Client Command-Line Interface Operations
	About the DBFS Client Command-Line Interface
	Creating Content Store Paths
	Creating a Directory
	Listing a Directory
	Copying Files and Directories
	Removing Files and Directories

	DBFS Mounting Interface (Linux and Solaris Only)
	Installing FUSE on Solaris 11 SRU7 and Later
	Mounting the DBFS Store
	Solaris-Specific Privileges
	About the Mount Command for Solaris and Linux
	Mounting a File System with a Wallet
	

	Mounting a File System with Password at Command Prompt
	Mounting a File System with Password Read from a File
	Unmounting a File System
	Mounting DBFS Through fstab Utility for Linux
	Mounting DBFS Through the vfstab Utility for Solaris
	Restrictions on Mounted File Systems
	Restrictions on Types of Files Stored at DBFS Mount Points

	File System Security Model
	About the File System Security Model
	Enabling Shared Root Access
	About DBFS Access Among Multiple Database Users
	Establishing DBFS Access Sharing Across Multiple Database Users

	HTTP, WebDAV, and FTP Access to DBFS
	Internet Access to DBFS Through XDB
	Web Distributed Authoring and Versioning (WebDAV) Access
	FTP Access to DBFS
	HTTP Access to DBFS

	DBFS Administration
	Using Oracle Wallet with DBFS Client
	DBFS Diagnostics
	Preventing Data Loss During Failover Events
	Bypassing Client-Side Write Caching
	Backing up DBFS
	DBFS Backup at the Database Level
	DBFS Backup Through a File System Utility

	Small File Performance of DBFS
	Enabling Advanced SecureFiles LOB Features for DBFS

	Shrinking and Reorganizing DBFS Filesystems
	About Changing DBFS Filesystems
	Advantages of Online Filesystem Reorganization
	Determining Availability of Online Filesystem Reorganization
	Invoking Online Filesystem Reorganization
	Required Permissions for Online Filesystem Reorganization

	A LOB Demonstration Files
	PL/SQL LOB Demonstration Files
	OCI LOB Demonstration Files
	Java LOB Demonstration Files

	Glossary
	BFILE
	Binary Large Object (BLOB)
	BLOB
	Character Large Object (CLOB)
	CLOB
	data interface
	deduplication
	DBFS
	DBFS Link
	external LOB
	internal persistent LOB
	introspect
	Large Objects (LOBs)
	LOB
	LOB attribute
	LOB value
	mount point
	National Character Large Object
	NCLOB
	persistent LOB
	SECUREFILE
	SPI
	Store
	Store Provider
	tablespace
	temporary LOB

	Index

